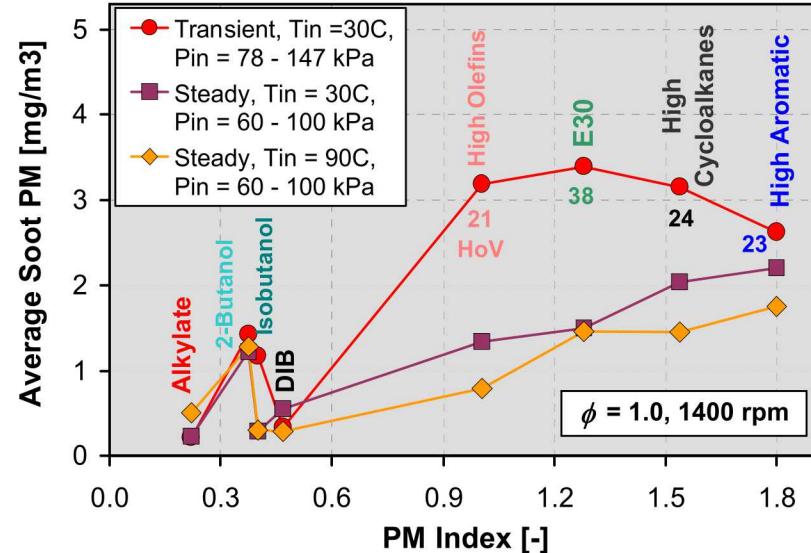


Co-Optimization of
Fuels & Engines

Potential Drivers of Soot Emissions from Alternative Fuels

David Vuilleumier, Emre Cenker,
Magnus Sjöberg, Lyle Pickett, Scott
Skeen (Sandia)

Advanced Engine Development



better fuels | better vehicles | sooner

Fuel Compositional Impacts on PM

- Varying exhaust particulate matter (PM) observed for operation with fuels palette under stoichiometric, knock-limited conditions
- Efficacy of Particulate Matter Index (PMI) varies with operating conditions
- What processes are driving differences in PM under tested conditions?

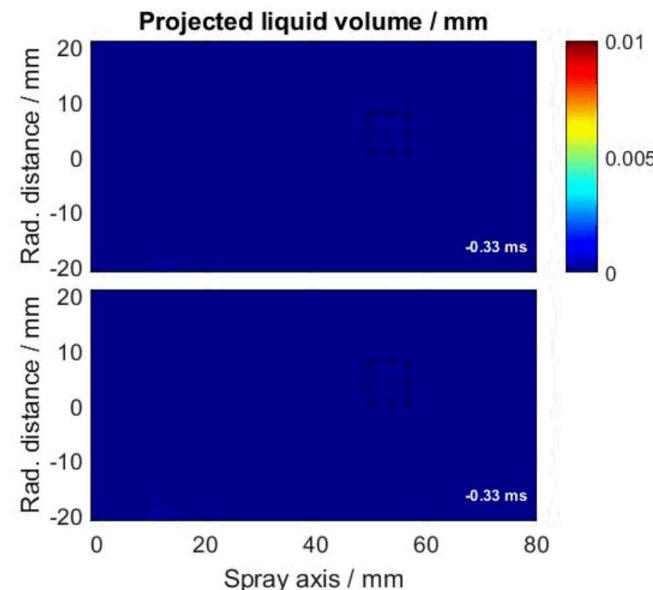
$$PMI = \sum_{i=1}^n I_{[443K]} = \sum_{i=1}^n \left(\frac{DBE_i + 1}{VP(443K)_i} \times Wt_i \right)$$

Spray Chamber Highlights Fuel Differences

	<i>Iso-butanol blend</i>	<i>Diisobutylene blend</i>	<i>High Olefins</i>	<i>Alkylate</i>
#	1	3	4	6
RON	98.1	98.3	98.3	98.0
MON	88.0	88.5	87.9	96.7
Octane Sensitivity	10.1	9.8	10.4	1.3
AKI (R+M)/2	93.1	93.4	93.1	97.3
T10 [°C]	-	-	77	93
T50 [°C]	-	-	104	100
T90 [°C]	-	-	136	106
TF [°C]	-	-	198	161
Aromatics [Vol. %]	19.0	20.1	13.4	0.7
Alkanes [Vol. %]	53.1	56.3	56.4	98.8
Cycloalkanes [Vol. %]	0.0	0.0	2.9	0.0
Olefins [Vol. %]	3.8	23.6	26.5	0.1
Oxygenates [Vol. %]	24.1	0.0	0.0	0.0
Net Heat of Combustion [MJ/kg]	40.6	43.5	44.1	44.5
Stoichiometric Air to Fuel Ratio [-]	13.8	14.7	14.8	15.1
Heat of Vaporization [kJ/kg]	412	337	333	308
Heat of Vaporization Per Mass of Stoichiometric Charge [kJ/kg]	27.9	21.5	21.1	19.1
Particulate Matter Index	0.40	0.47	1.00	0.22
Average Molecular Formula	C: 6.299 H: 12.744 O: 0.326	C: 7.519 H: 14.420	C: 7.13 H: 14.23	C: 7.76 H: 17.45

Constant-volume chamber experiments

8-hole, 60° injector


$$T_{\text{inj}} = 75^{\circ} \text{ C}$$

$$P_{\text{inj}} = 120 - 170 \text{ bar}$$

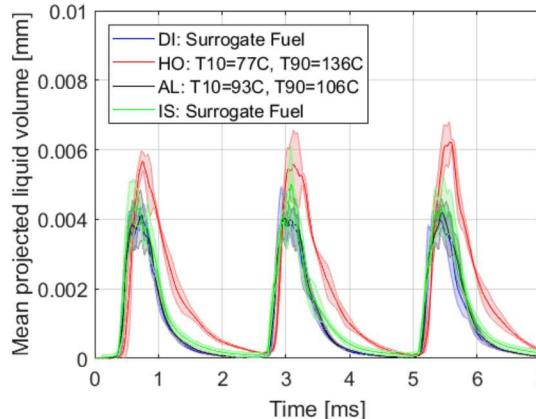
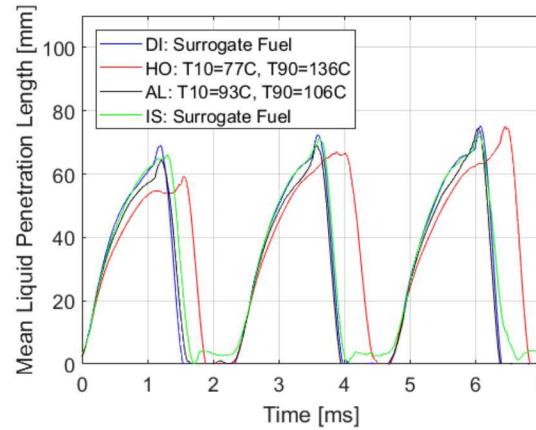
$$t_{\text{inj}} = 0.6 - 1.0 \text{ ms}$$

$$P_{\text{gas}} = 1 \text{ bar}$$

$$T_{\text{gas}} = 70 - 150^{\circ} \text{ C}$$

$$P_{\text{inj}} = 120 \text{ bar}; t_{\text{inj}} = 0.6 \text{ ms}; T_{\text{gas}} = 150^{\circ} \text{ C}$$

Impacts of Fuel Distillation Curve on Sprays

Full-boiling range gasoline yields differences relative to abbreviated boiling range fuels:

- Shorter liquid-penetration length
- Increased liquid persistence after end of injection

Do these differences in spray behavior cause observed differences in engine-out PM?

Ongoing optical engine experiments will shed additional light

Acknowledgements

Kevin Stork, Gurpreet Singh

Mike Weismiller, Alicia Lindauer

**Co-Optimization of
Fuels & Engines**

This research was conducted as part of the Co-Optimization of Fuels & Engines (Co-Optima) project sponsored by the U.S. Department of Energy (DOE) Office of Energy Efficiency and Renewable Energy (EERE), Bioenergy Technologies and Vehicle Technologies Offices.

Gina Fioroni, Lisa Fouts, Earl Christensen and Robert McCormick of NREL for fuel property data.

Emre Cenker, Scott Skeen, Lyle Pickett, Aaron Czeszynski and Joonisk Hwang for support with the spray study in the constant-volume vessel.

Sandia National Laboratories is a multi-mission laboratory managed and operated by National Technology and Engineering Solutions of Sandia, LLC., a wholly owned subsidiary of Honeywell International, Inc., for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-NA0003525.