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In the Past we Measured DCS and Alignment of
NO(A) State Collisions.
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Crossing two beam: NO/He with NO/Ar. NO is
Scattered from Each Beam Simultaneously.
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We Excite Different Rotational Levels of the A state
Using Different Transitions.

NO(v=0) A <-- X LIF spectrum
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Easier to Compare the Calculations of the NO He and
NO Ar scattering when performed in this manner.
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QM Scattering Calculations do not Reproduce
Exactly the Results but Capture the Trends.

NO(A) + Ar: NO(A) + Ar:
forward scattering side & back scattering
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Collisions at High Collision Energy Can be Roughly
Thought of as Hard and Sudden.

apse

The classical dynamics associated with hard ellipse scattering can be analytically
described. The Apse vector is the vector along which angular momentum is transferred
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The Apse Model States That the Final J Vector
Cannot Lie Along the Apse Vector
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This Simple Rule Implies an Alignment to the Collisions
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Detection with Linear Polarized Light Show the
Alignment Inherent in the Images. NO(N=9)
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Calculated and Experimental Images are in Good

Agreement.
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Collisional Energy Transfer of Oriented NO (A, v=0, N=2)

1) Prepare NO(A) with circularly polarized light at ~¥226 nm
2) Orient K vector with relative velocity vector of collision
3) Detect with circularly polarized light

Babinet Soleil
Compensator

Photoelastic
Modulator

A AA A

I

. ke ‘ ! ‘
| | e

w v W ‘ L

Ne




Energy

)

Scheme for production of NO(A) and detection of
NO (A).
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Hyperfine Depolarization Makes the Orientation
Oscillate but an Average Value of A10= 0.6 is Observed

0.7 1
0.6 -
0.5+

O .
0.4 -
0.3
0.2 - . . ; . ; :

170 220 270 320 370
Pump - probe delay / ns
G G
l@ @F‘ cas pHAsE cheMmicaL piysics aj




)

NJ’

Co-

Counter-

Images of Co- and Counter- Rotating NO
After Collision With NO(N=2)

Scattering images for each final N'in the two geometries. Top row:
co-rotating geometry, bottom row. counter-rotating geometry.
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The intensity of the images as a function of
azimuthal angle are recorded and compared
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C is masured and compared to apse model and

Quantum Calculations.
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Figure 6: Integrals and values of C for each quantum state . For each quantum state the integrals for the co-

and counter rotating geometries are shown in the upper plot, in black and red, respectively. The values of C are
plotted in the lower plot.
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C values are seen to be dominated by the A10
moments.
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Conclusions

Oriented collisions allow one to test the details of the potential energy surfaces
And inform the scattering calculations.

Co-rotating products are more probable than counter-rotating for low values of N.

This is a four vector correlation.
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H, Alignment utilizing double resonance and studied with
Velocity-mapped imaging of photo-dissociation products

 The distribution of products VMI imaging provides a measurement of the degree of
molecular alignment prior to photodissociation.

* Even as the simplest molecule, H, in strong laser fields remains a challenge for high
level quantum theory.

e Single quantum states may be excited with narrowband tunable lasers, providing a

high level of control, minimizing the number of coupled rotational states, and thus
simplifying the analysis of data.
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To measure the alignment of the H,, (E,F) we use a 201.7-
nm laser beam to produce the ro-vibrational state we
desire, then align and detect with 532-nm light.
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To measure the alignment of the H, (E,F) we use a 201.7-nm laser
beam to produce the ro-vibrational state we desire, then align and
detect with 532-nm light.

N
532nm
| H+H (n=3)

Sy H,(EF 5,

potential energy (A.U.)

laser pol.

201.76 nm| | 201.64 nm

This is the image you obtain of H*
coming from 532-nm Photo-
dissociation of the H, EF (v=0, j=0)
quantum state.
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The E,F state lies on top of the B and C states. Those States
Couple to the E,F state via the Electronic Dipole Operator.

Coupling to the B state is along the molecular axis and
to the C state is perpendicular to molecular axis
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The alignment of the H, by intense 532-nm light
is quantified by taking images at different 532-nm intensities.

H, (E,F; J = 0)
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The alignment of the H2 (E,F J=0) as a function of 532-nm laser
intensity is plotted and fitted using an Adiabatic Alignment model
Employing J=0, J=2 and a cross term.
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The angular distribution of the inner ring can be well fit with a model that involves mixing of rotational wave
functions as a function of laser intensity. At the lowest laser power at which we observe signal we can see
evidence of H2(E,F J=2) quantum state mixing
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Analysis of the alighment of the H2 (E,F J=0 and J=1) as a function
of 532-nm laser intensity resulted in polarizability measurement

\/ Mixing coefficient is measure

+— — of the mixing between the
different rotational states of

the H, molecule. From the slope of

this line at low laser intensity we
extract the polarizability

Mixing Coefficient
(=]
w

0.0 5.0x107 1.0x107 15107
E (W/cm?)

Proposed Work: To remove ambiguity for comparison to simulations, two different
wavelengths will be used to prepare and probe the molecular alignment.
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By modeling the data, one can extract the polarizability
anisotropy of H,(E,F) state when irradiated with 532-nm light.
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How Polarizable is the H2(E,F) state?

Anisotropy
(a.u.)

__E_

Theoretical values in static fields:
do. ground state = 1.9 a.u.”
oa E,F state = -9600 a.u.*

* E. Ishiguro, et al; Proc. Phys. Soc. A 65, 178 (1951)
+ Komasa, J.; Adv. Quant. Chem. 48, 151 (2005).

» Anisotropy (6a) values of 312 a.u. is almost 46, A3, respectively.
« By comparison CS, has 10 A3, |, has 7 A% and 1,4 diiodobenzene has about 18 A3,

» The most polarizable state of any molecule to date.
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Conclusions

Doing dynamics on transient excited states allows
one to have better preparation of the initial conditions.

We have demonstrated this preparation for NO(A) and H2 (EF)
both having 200 ns lifetimes.

Dynamics not observed on the ground state are studied. In Hydrogen

he mixing with nearby electronic states creates superposition states

with strange characteristics. For NO (A) an oscillating orientation of the J vector
is observed and utilized for collisional studies.
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