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Abstract

Background: Machine learning (ML) has made a significant impact in medicine
and cancer research; however, its impact in these areas has been undeniably
slower and more limited than in other application domains. A major reason for
this has been the lack of availability of patient data to the broader ML research
community, in large part due to patient privacy protection concerns. High-quality,
realistic, synthetic datasets can be leveraged to accelerate methodological
developments in medicine. By and large, medical data is high dimensional and
often categorical. These characteristics pose multiple modeling challenges.

Methods: In this paper, we evaluate three classes of synthetic data generation
approaches; probabilistic models, classification-based imputation models, and
generative adversarial neural networks. Metrics for evaluating the quality of the
generated synthetic datasets are presented and discussed.

Results: While the results and discussions are broadly applicable to medical data,
for demonstration purposes we generate synthetic datasets for cancer based on
the publicly available cancer registry data from the Surveillance Epidemiology and
End Results (SEER) program. Specifically, our cohort consists of breast,
respiratory, and non-solid cancer cases diagnosed between 2010 and 2015, which
includes over 360,000 individual cases.

Conclusions: We discuss the trade-offs of the different methods and metrics,
providing guidance on considerations for the generation and usage of medical
synthetic data.

Keywords: Synthetic Data Generation; Cancer Patient Data; Information
Disclosure; Generative Models

Background
Increasingly, large amounts and types of patient data are being electronically col-

lected by healthcare providers, governments, and private industry. While such

datasets are potentially highly valuable resources for scientists, they are generally

not accessible to the broader research community due to patient privacy concerns.

Even when it is possible for a researcher to gain access to such data, ensuring proper

data usage and protection is a lengthy process with strict legal requirements. This

can severely delay the pace of research and, consequently, its translational benefits

to patient care.

To make sensitive patient data available to others, data owners typically de-

identify or anonymize the data in a number of ways, including removing identifiable

features (e.g., names and addresses), perturbing them (e.g., adding noise to birth

dates), or grouping variables into broader categories to ensure more than one in-
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dividual in each category [1]. While the residual information contained in properly

anonymized data alone may not be used to re-identify individuals, once linked to

other datasets (e.g., social media platforms), they may contain enough information

to identify specific individuals. Efforts to determine the efficacy of de-identification

methods have been inconclusive, particularly in the context of large datasets [2]. As

such, it remains extremely difficult to guarantee that re-identification of individual

patients is not a possibility with current approaches.

Given the risks of re-identification of patient data and the delays inherent in

making such data more widely available, synthetically generated data is a promis-

ing alternative or addition to standard anonymization procedures. Synthetic data

generation has been researched for nearly three decades [3] and applied across a

variety of domains [4, 5], including patient data [6] and electronic health records

(EHR) [7, 8]. It can be a valuable tool when real data is expensive, scarce or simply

unavailable. While in some applications it may not be possible, or advisable, to

derive new knowledge directly from synthetic data, it can nevertheless be leveraged

for a variety of secondary uses, such as educative or training purposes, software

testing, and machine learning and statistical model development. Depending on

one’s objective, synthetic data can either entirely replace real data, augment it, or

be used as a reasonable proxy to accelerate research.

A number of synthetic patient data generation methods aim to minimize the use

of actual patient data by combining simulation, public population-level statistics,

and domain expert knowledge bases [9, 8, 7, 10]. For example, in Dube and Gal-

lagher [8] synthetic electronic health records are generated by leveraging publicly

available health statistics, clinical practice guidelines, and medical coding and ter-

minology standards. In a related approach, patient demographics (obtained from

actual patient data) are combined with expert-curated, publicly available patient

care patterns to generate synthetic electronic medical records [9]. While the empha-

sis on not accessing real patient data eliminates the issue of re-identification, this

comes at the cost of a heavy reliance on domain-specific knowledge bases and man-

ual curation. As such, these methods may not be readily deployable to new cohorts

or sets of diseases. Entirely data-driven methods, in contrast, produce synthetic data

by using patient data to learn parameters of generative models. Because there is no

reliance on external information beyond the actual data of interest, these methods

are generally disease or cohort agnostic, making them more readily transferable to

new scenarios.

Synthetic patient data has the potential to have a real impact in patient care by

enabling research on model development to move at a quicker pace. While there

exists a wealth of methods for generating synthetic data, each of them uses differ-

ent datasets and often different evaluation metrics. This makes a direct comparison

of synthetic data generation methods surprisingly difficult. In this context, we find

that there is a void in terms of guidelines or even discussions on how to compare

and evaluate different methods in order to select the most appropriate one for a

given application. Here, we have conducted a systematic study of several methods

for generating synthetic patient data under different evaluation criteria. Each met-

ric we use addresses one of three criteria of high-quality synthetic data: 1) Fidelity

at the individual sample level (e.g., synthetic data should not include prostate can-

cer in a female patient), 2) Fidelity at the population level (e.g., marginal and
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joint distributions of features), and 3) privacy disclosure. The scope of the study

is restricted to data-driven methods only, which, as per the above discussion, do

not require manual curation or expert-knowledge and hence can be more readily

deployed to new applications. While there is no single approach for generating syn-

thetic data which is the best for all applications, or even a one-size-fits-all approach

to evaluating synthetic data quality, we hope that the current discussion proves use-

ful in guiding future researchers in identifying appropriate methodologies for their

particular needs.

The paper is structured as follows. We start by providing a focused discussion

on the relevant literature on data-driven methods for generation of synthetic data,

specifically on categorical features, which is typical in medical data and presents

a set of specific modeling challenges. Next, we describe the methods compared in

the current study, along with a brief discussion of the advantages and drawbacks of

each approach. We then describe the evaluation metrics, providing some intuition

on the utility and limitation of each. The datasets used and our experimental setup

are presented. Finally, we discuss our results followed by concluding remarks.

Related Work

Synthetic data generation can roughly be categorized into two distinct classes:

process-driven methods and data-driven methods. Process-driven methods derive

synthetic data from computational or mathematical models of an underlying phys-

ical process. Examples include numerical simulations, Monte Carlo simulations,

agent-based modeling, and discrete-event simulations. Data-driven methods, on the

other hand, derive synthetic data from generative models that have been trained

on observed data. Because this paper is mainly concerned with data-driven meth-

ods, we briefly review the state-of-the-art methods in this class of synthetic data

generation techniques. We consider three main types of data-driven methods: Im-

putation based methods, full joint probability distribution methods, and function

approximation methods.

Imputation based methods for synthetic data generation were first introduced by

Rubin [3] and Little [11] in the context of Statistical Disclosure Control (SDC), or

Statistical Disclosure Limitation (SDL) [4]. SDC and SDL methodologies are pri-

marily concerned with reducing the risk of disclosing sensitive data when performing

statistical analyses. A general survey paper on data privacy methods related to SDL

is Matthews and Harel [12]. Standard techniques are based on multiple imputation

[13], treating sensitive data as missing data and then releasing randomly sampled

imputed values in place of the sensitive data. These methods were later extended

to the fully synthetic case by Raghunathan, Reiter and Rubin [14]. Early methods

focused on continuous data with extensions to categorical data following [15]. Gen-

eralized linear regression models are typically used, but non-linear methods (such

as Random Forest and neural networks) can and have been used [16]. Remedies for

some of the shortcomings with multiple imputation for generating synthetic data

are offered in Loong and Rubin [17]. An empirical study of releasing synthetic data

under the methods proposed in Raghunathan, Reiter and Rubin [14] is presented in

Reiter and Drechsler [18]. Most of the SDC/SDL literature focuses on survey data

from the social sciences and demography. The generation of synthetic electronic

health records has been addressed in Dube and Gallagher [8].
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Multiple imputation has been the de facto method for generating synthetic data

in the context of SDC and SDL. While imputation based methods are fully prob-

abilistic, there is no guarantee that the resulting generative model is an estimate

of the full joint probability distribution of the sampled population. In some ap-

plications, it may be of interest to model this probability distribution directly, for

example if parameter interpretability is important. In this case, any statistical mod-

eling procedure that learns a joint probability distribution is capable of generating

fully synthetic data.

In the case of generating synthetic electronic health care records, one must be

able to handle multivariate categorical data. This is a challenging problem, partic-

ularly in high dimensions. It is often necessary to impose some sort of dependence

structure on the data [19]. For example, Bayesian networks, which approximate a

joint distribution using a first-order dependence tree, have been proposed in Zhang

et al. [20] as a method for generating synthetic data with privacy constraints. More

flexible non-parametric methods need not impose such dependence structures on

the distributions. Examples of Bayesian non-parametric methods for multidimen-

sional categorical data include latent Gaussian process methods [21] and Dirichlet

mixture models [22].

Synthetic data has recently attracted attention from the machine learning (ML)

and data science communities for reasons other than data privacy. Many state-of-

the-art ML algorithms are based on function approximation methods such as deep

neural networks (DNN). These models typically have a large number of parameters

and require large amounts of data to train. When labeled data sets are impossible or

expensive to obtain, it has been proposed that synthetically generated training data

can complement scarce real data [23]. Similarly, transfer learning from synthetic

data to real data to improve ML algorithms has also been explored [24, 25]. Thus

data augmentation methods from the ML literature are a class of synthetic data

generation techniques that can be used in the bio-medical domain.

Generative Adversarial Networks (GANs) are a popular class of DNNs for un-

supervised learning tasks [26]. In particular, they produce two jointly-trained net-

works; one which generates synthetic data intended to be similar to the training

data, and one which tries to discriminate the synthetic data from the true training

data. They have proven to be very adept at learning high-dimensional, continuous

data such as images [26, 27]. More recently GANs for categorical data have been

proposed in Camino, Hammerschmidt and State [28] with specific applications to

synthetic EHR data in Choi et al. [29].

Finally, we note that several open-source software packages exist for synthetic data

generation. Recent examples include the R packages synthpop [30] and SimPop [31],

the Python package DataSynthesizer [5], and the Java-based simulator Synthea [7].

Methods
Methods for Synthetic Data Generation

In this paper we investigate various techniques for synthetic data generation. The

techniques we investigate range from fully generative Bayesian models to neural net-

work based adversarial models. We next provide brief descriptions of the synthetic

data generation approaches considered.
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Sampling from independent Marginals

The Independent marginals (IM) method is based on sampling from the empirical

marginal distributions of each variable. The empirical marginal distribution is es-

timated from the observed data. We next summarize the key advantages (+) and

disadvantages (-) of this approach.

+ This approach is computationally efficient and the estimation of marginal

distributions for different variables may be done in parallel.

− IM does not capture statistical dependencies across variables, and hence the

generated synthetic data may fail to capture the underlying structure of the

data.

This method is included in our analysis solely as a simple baseline for other more

complex approaches.

Bayesian Network

Bayesian networks (BN) are probabilistic graphical models where each node repre-

sents a random variable, while the edges between the nodes represent probabilistic

dependencies among the corresponding random variables. For synthetic data gener-

ation using a Bayesian network, the graph structure and the conditional probability

distributions are inferred from the real data. In BN, the full joint distribution is

factorized as:

p(x) =
∏
v∈V

p(xv|xpa(v)) (1)

where V is the set of random variables representing the categorical variables and

xpa(v) is the subset of parent variables of v, which is encoded in the directed acyclic

graph.

The learning process consists of two steps: (i) learning a directed acyclic graph

from the data, which expresses all the pairwise conditional (in)dependence among

the variables, and (ii) estimating the conditional probability tables (CDP) for each

variable via maximum likelihood. For the first step we use the Chow-Liu tree [19]

method, which seeks a first-order dependency tree-based approximation with the

smallest KL-divergence to the actual full joint probability distribution. The Chow-

Liu algorithm provides an approximation and cannot represent higher-order depen-

dencies. Nevertheless, it has been shown to provide good results for a wide range of

practical problems.

The graph structure inferred from the real data encodes the conditional depen-

dence among the variables. In addition, the inferred graph provides a visual repre-

sentation of the variables’ relationships. Synthetic data may be generated by sam-

pling from the inferred Bayesian network. We next summarize the key advantages

and disadvantages of this approach.

+ BN is computationally efficient and scales well with the dimensionality of the

dataset.

+ The directed acyclic graph can also be utilized for exploring the causal rela-

tionships across the variables.
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− Even though the full joint distribution’s factorization, as given by Eq. (1),

is general enough to include any possible dependency structure, in practice,

simplifying assumptions on the graphical structure are made to ease model

inference. These assumptions may fail to represent higher-order dependencies.

− The inference approach adopted in this paper is applicable only to discrete

data. In addition, the Chow-Liu heuristic used here constructs the directed

acyclic graph in a greedy manner. Therefore, an optimal first-order depen-

dency tree is not guaranteed.

Mixture of Product of Multinomials

Any multivariate categorical data distribution can be expressed as a mixture of

product of multinomials (MPoM) [22],

p(xi1 = c1, . . . , xip = cp) =

k∑
h=1

νh

p∏
j=1

ψ
(j)
hcj

(2)

where xi = (xi1, . . . , xip) represents a vector of p categorical variables, k is the

number of mixture components, νh is the weight associated with the h-th mixture

component, and ψ
(j)
hcj

= Pr(xij = cj |zi = h) is the probability of xij = cj given

allocation of individual i to cluster h, where zi is a cluster indicator. Although any

multivariate distribution may be expressed as in (2) for a sufficiently large k, proper

choice of k is troublesome. To obtain k in a data-driven manner, Dunson and Xing

[22] proposed a Dirichlet process mixture of product multinomials to model high-

dimensional multivariate categorical data. We next summarize the key advantages

and disadvantages of this approach.

+ Theoretical guarantees exist regarding the flexibility of mixture of product

multinomials to model any multivariate categorical data.

+ The Dirichlet process mixture of product of multinomials is a fully conjugate

model and efficient inference may be done via a Gibbs sampler.

− Sampling based inference can be very slow in high dimensional problems.

− While extending the model to mixed data types (such as continuous and

categorical) is relatively straightforward, theoretical guarantees do not exist

for mixed data types.

Categorical Latent Gaussian Process

The categorical latent Gaussian process (CLGP) is a generative model for mul-

tivariate categorical data [21]. CLGP uses a lower dimensional continuous latent

space and non-linear transformations for mapping the points in the latent space to

probabilities (via softmax) for generating categorical values. The authors employ

standard Normal priors on the latent space and sparse Gaussian process (GPs)

mappings to transform the latent space. For modeling clinical data related to can-

cer, the model assumes that each patient record (a data vector containing a set of

categorical variables) has a continuous latent low-dimensional representation. The

proposed model is not fully conjugate, but model inference may be performed via

variational techniques.

The hierarchical CLGP model [21] is provided below:
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xnq
iid∼ N (0, σ2

x)

Fdk
iid∼ GP(0,Kd)

fndk = Fdk(xn), umdk = Fdk(zm)

ynd ∼ Softmax(fnd)

for n ∈ [N ] (the set of naturals between 1 and N), q ∈ [Q], d ∈ [D], k ∈ [K],

m ∈ [M ], covariance matrices Kd, and where the Softmax distribution is defined

as,

Softmax(y = k; f) = Categorical

(
exp(fk)

exp(lse(f))

)
, (3)

lse(f) = log

(
1 +

K∑
k′=1

exp(fk′)

)
(4)

for k = 0, ...,K and with f0 := 0. Each patient is represented in the latent space as

xn. For each feature d, xn has a sequence of weights (fnd1, ..., fndK), corresponding

to each possible feature level k, that follows a Gaussian process. Softmax returns

a feature value ynd based on these weights, resulting in the patient’s feature vec-

tor yn = (yn1, ..., ynD). Note that CLGP does not explicitly model dependence

across variables (features). However, the Gaussian process explicitly captures the

dependence across patients and the shared low-dimensional latent space implicitly

captures dependence across variables.

We next summarize the key advantages and disadvantages of this approach.

+ Like BN and MPoM, CLGP is a fully generative Bayesian model, but has

richer latent non-linear mappings that allows for representation of very com-

plex full joint distributions.

+ The inferred low-dimensional latent space in CLGP may be useful for data

visualization and clustering.

− Inference for CLGP is considerably more complex than other models due to its

non-conjugacy. An approximate Bayesian inference method such as variational

Bayes (VB) is required.

− VB for CLGP requires several other approximations such as low-rank approx-

imation for GPs as well as Monte Carlo integration. Hence, the inference for

CLGP scales poorly with data size.

Generative Adversarial Networks

Generative adversarial networks (GANs) [26] have recently been shown to be re-

markably successful for generating complex synthetic data, such as images and text

[32, 33, 34]. In this approach, two neural networks are trained jointly in a compet-

itive manner: the first network tries to generate realistic synthetic data, while the

second one attempts to discriminate real and synthetic data generated by the first

network. During the training each network pushes the other to perform better. A
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widely known limitation of GANs is that it is not directly applicable for generat-

ing categorical synthetic datasets, as it is not possible to compute the gradients

on latent categorical variables that are required for training via backpropagation.

As clinical patient data are often largely categorical, recent works like medGAN

[29] have applied autoencoders to transform categorical data to a continuous space,

after which GANs can be applied for generating synthetic electronic health records

(EHR). However, medGAN is applicable to binary and count data, and not multi-

categorical data. In this paper we adopt the multi-categorical extension of medGAN,

called MC-MedGAN [28] to generate synthetic data related to cancer. We next sum-

marize the key advantages and disadvantages of this approach.

+ Unlike POM, BN and CLGP, MC-MedGAN is a generative approach which

does not require strict probabilistic model assumptions. Hence, it is more

flexible compared to BN, CLGP and POM.

+ GANs-based models can be easily extended to deal with mixed data types,

e.g., continuous and categorical variables.

− MC-MedGAN is a deep model and has a very large number of parameters.

Proper choice of multiple tuning parameters (hyper-parameters) is difficult

and time consuming.

− GANs are known to be difficult to train as the process of solving the associ-

ated min-max optimization problem can be very unstable. However, recently

proposed variations of GAN such as Wasserstein GANs, and its variants, have

significantly alleviated the problem of stability of training GANs [35, 36].

Multiple Imputation

Multiple imputation based methods have been very popular in the context of syn-

thetic data generation, especially for applications where a part of the data is con-

sidered sensitive [4]. Among the existing imputation methods, the Multivariate Im-

putation by Chained Equations (MICE) [37] has emerged as a principled method

for masking sensitive content in datasets with privacy constraints. The key idea

is to treat sensitive data as missing data. One then imputes this “missing” data

with randomly sampled values generated from models trained on the nonsensitive

variables.

As discussed earlier, generating fully synthetic data often utilizes a generative

model trained on an entire dataset. It is then possible to generate complete syn-

thetic datasets from the trained model. This approach differs from standard multiple

imputation methods such as MICE, which train on subsets of nonsensitive data to

generate synthetic subsets of sensitive data. In this paper we use a variation of

MICE for the task of fully synthetic data generation. Model inference proceeds as

follows.

1) Define a topological ordering of the variables.

2) Compute the empirical marginal probability distribution for the first variable.

3) For each successive variables in the topological order, learn a probabilistic

model for the conditional probability distribution on the current variable given

the previous variables, that is, p(xv|x:v), which is done by regressing the v-th

variable on all its predecessors as independent variables.
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In the sampling phase, the first variable is sampled from the empirical distribution

and the remaining variables are randomly sampled from the inferred conditional dis-

tributions following the topological ordering. While modeling the conditional distri-

butions with generalized linear models is very popular, other non-linear techniques

such as random forests and neural nets may be easily integrated in this framework.

For the MICE variation used here, the full joint probability distribution is factor-

ized as follows:

p(x) =
∏
v∈V

p(xv|x:v) (5)

where V is the set of random variables representing the variables to be generated,

and p(xi|x:v) is the conditional probability distribution of the v-th random variable

given all its predecessors. Clearly, the definition of the topological ordering plays a

crucial role in the model construction. A common approach is to sort the variables

by the number of levels either in ascending or descending order.

We next summarize the key advantages and disadvantages of this approach.

+ MICE is computationally fast and can scale to very large datasets, both in

the number of variables and samples.

+ It can easily deal with continuous and categorical values by properly choosing

either a Softmax or a Gaussian model for the conditional probability distri-

bution for a given variable.

− While MICE is probabilistic, there is no guarantee that the resulting gen-

erative model is a good estimate of the underlying joint distribution of the

data.

− MICE strongly relies on the flexibility of the model for the conditional prob-

ability distributions and also the topological ordering of the directed acyclic

graph.

Evaluation Metrics

To measure the quality of the synthetic data generators, we use a set of comple-

mentary metrics that can be divided into two groups: (i) data utility, and (ii)

information disclosure. In the former, the metrics gauge the extent to which the

statistical properties of the real (private) data are captured and transferred to the

synthetic dataset. In the latter group, the metrics measure how much of the real

data may be revealed (directly or indirectly) by the synthetic data. It has been well

documented that increased generalization and suppression in anonymized data (or

smoothing in synthetic data) for increased privacy protection can lead to a direct

reduction in data utility [38]. In the context of this trade-off between data utility

and privacy, evaluation of models for generating such data must take both opposing

facets of synthetic data into consideration.

Data utility metrics

In this group, we consider the following metrics: Kullback-Leibler (KL) divergence,

pairwise correlation difference, log-cluster, support coverage, and cross-classification.

The Kullback-Leibler (KL) divergence is computed over a pair of real and

synthetic marginal probability mass functions (PMF) for a given variable, and it
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measures the similarity of the two PMFs. When both distributions are identical,

the KL divergence is zero, while larger values of the KL divergence indicate a larger

discrepancy between the two PMFs. Note that the KL divergence is computed for

each variable independently; therefore, it does not measure dependencies among the

variables. The KL divergence of two PMFs, Pv and Qv for a given variable v, is

computed as follows:

DKL(Pv‖Qv) =

|v|∑
i=1

Pv(i) log
Pv(i)

Qv(i)
, (6)

where |v| is the cardinality (number of levels) of the categorical variable v. Note

that the KL divergence is defined at the variable level, not over the entire dataset.

The pairwise correlation difference (PCD) is intended to measure how much

correlation among the variables the different methods were able to capture. PCD is

defined as:

PCD(XR, XS) = ‖Corr(XR)− Corr(XS)‖F , (7)

where XR and XS are the real and synthetic data matrices, respectively. PCD

measures the difference in terms of Frobennius norm of the Pearson correlation

matrices computed from real and synthetic datasets. The smaller the PCD, the

closer the synthetic data is to the real data in terms of linear correlations across

the variables. PCD is defined at the dataset level.

The log-cluster metric [39] is a measure of the similarity of the underlying latent

structure of the real and synthetic datasets in terms of clustering. To compute this

metric, first, the real and synthetic datasets are merged into one single dataset.

Second, we perform a cluster analysis on the merged dataset with a fixed number of

clusters G using the k-means algorithm. Finally, we calculate the metric as follows:

Uc(XR, XS) = log
( 1

G

G∑
j=1

[nRj
nj
− c
]2)

, (8)

where nj is the number of samples in the j-th cluster, nRj is the number of samples

from the real dataset in the j-th cluster, and c = nR/(nR + nS). Large values

of Uc indicate disparities in the cluster memberships, suggesting differences in the

distribution of real and synthetic data. In our experiments, the number of clusters

was set to 20. The log-cluster metric is defined at the dataset level.

The support coverage metric measures how much of the variables support in

the real data is covered in the synthetic data. The metric considers the ratio of

the cardinalities of a variable’s support (number of levels) in the real and synthetic

data. Mathematically, the metric is defined as the average of such ratios over all

variables:

Sc(XR, XS) =
1

V

V∑
v=1

|Sv|
|Rv|

(9)
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where Rv and Sv are the support of the v-th variable in the real and synthetic data,

respectively. At its maximum (in the case of perfect support coverage), this metric

is equal to 1. This metric penalizes synthetic datasets if less frequent categories are

not well represented. It is defined at the data level

The cross-classification metric is another measure of how well a synthetic

dataset captures the statistical dependence structures existing in the real data.

Unlike PCD, in which statistical dependence is measured by Pearson correlation,

cross-classification measures dependence via predictions generated for one variable

based on the other variables (via a classifier).

We consider two cross-classification metrics in this paper. The first cross-

classification metric, referred to as CrCl-RS, involves training on the real data

and testing on hold-out data from both the real and synthetic datasets. This met-

ric is particularly useful for evaluating if the statistical properties of the real data

are similar to those of the synthetic data. The second cross-classification metric,

referred to as (CrCl-SR), involves training on the synthetic data and testing on

hold-out data from both real and synthetic data. This metric is particularly use-

ful in determining if scientific conclusions drawn from statistical/machine learning

models trained on synthetic datasets can safely be applied to real datasets. We

next provide additional details regarding the cross-classification metric CrCl-RS.

The cross-classification metric CrCl-SR is computed in a similar manner.

The available real data is split into training and test sets. A classifier is trained on

the training set (real) and applied to both test set (hold out real) and the synthetic

data. Classification performance metrics are computed on both sets. CrCl-RS is

defined as the ratio between the performance on synthetic data and on the held out

real data. Figure 1 presents a schematic representation of the cross classification

computation. Clearly, the classification performance is dependent on the chosen

classifier. Here, we consider a decision tree as the classifier due to the discrete

nature of the dataset. To perform the classification, one of the variables is used as

a target, while the remaining are used as predictors. This procedure is repeated

for each variable as target, and the average value is reported. In general, for both

cross-classification metrics, a value close to 1 is ideal.

Disclosure metrics

There are two broad classes of privacy disclosure risks: identity disclosure and at-

tribute disclosure. Identity or membership disclosure refers to the risk of an intruder

correctly identifying an individual as being included in the confidential dataset. This

attack is possible when the attacker has access to a complete set of patient records.

In the fully synthetic case, the attacker wants to know whether a private record the

attacker has access to was used for training the generative model that produced

the publicly available synthetic data. Attribute disclosure refers to the risk of an

intruder correctly guessing the original value of the synthesized attributes of an

individual whose information is contained in the confidential dataset. In the exper-

imental analysis section, we will show results for both privacy disclosure metrics.

Next, we provide details on how these metrics are computed.

In membership disclosure [29], one claims that a patient record x was present

in the training set if there is at least one synthetic data sample within a certain
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distance (for example, in this paper we have considered Hamming distance) to the

record x. Otherwise, it is claimed not to be present in the training set. To compute

the membership disclosure of a given method m, we select a set of r patient records

used to train the generative model and another set of r patient records that were

not used for training, referred to as test records. With the possession of these 2r

patient records and a synthetic dataset generated by the method m, we compute

the claim outcome for each patient record by calculating its Hamming distance to

each sample from the synthetic dataset, and then determining if there is a synthetic

data sample within a prescribed Hamming distance. For each claim outcome there

are four possible scenarios: true positive (attacker correctly claims their targeted

record is in the training set), false positive (attacker incorrectly claims their targeted

record is in the training set), true negative (attacker correctly claims their targeted

record is not in the training set), or false negative (attacker incorrectly claims their

targeted record is not in the training set). Finally, we compute the precision and

recall of the above claim outcomes. In our experiments, we set r=1000 records and

used the entire set of synthetic data available.

Attribute disclosure [29] refers to the risk of an attacker correctly inferring sen-

sitive attributes of a patient record (e.g., results of medical tests, medications, and

diagnoses) based on a subset of attributes known to the attacker. For example, in

the fully synthetic data case, an attacker can first extract the k nearest neighboring

patient records of the synthetic dataset based on the known attributes, and then

infer the unknown attributes via a majority voting rule. The chance of unveiling the

private information is expected to be low if the synthetic generation method has

not memorized the private dataset. The number of known attributes, the size of the

synthetic dataset, and the number of k nearest neighbors used by the attacker affect

the chance of revealing the unknown attributes. In our experiments we investigate

the chance that an attacker can reveal all the unknown attributes, given different

numbers of known attributes and several choices of k.

In addition to membership and attribute attacks, the framework of differential

privacy has garnered a lot of interest [40, 41, 42]. The key idea is to protect the

information of every individual in the database against an adversary with complete

knowledge of the rest of the dataset. This is achieved by ensuring that the synthetic

data does not depend too much on the information from any one individual. A

significant amount of research has been devoted on designing α-differential or (α, δ)-

differential algorithms [43, 44]. An interesting direction of research has been in

converting popular machine learning algorithms, such as deep learning algorithms,

to differentially private algorithms via techniques such as gradient clipping and

noise addition [45, 46]. In this paper, we have not considered differential privacy

as a metric. While the algorithms discussed in this paper such as MC-MedGAN or

MPoM may be modified to introduce differential privacy, that is beyond the scope

of this paper.

Experimental analysis on SEER’s Research dataset

In this section we describe the data used in our experimental analysis. We considered

the methods previously discussed, namely Independent Marginals (IM), Bayesian

Network (BN), Mixture of Product of Multinomials (MPoM), CLGP, MC-MedGAN,
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and MICE. Three variants of MICE were considered: MICE with Logistic Regression

(LR) as classifier and variables ordered by the number of categories in an ascending

manner (MICE-LR), MICE with LR and ordered in a descending manner (MICE-

LR-DESC), and MICE with Decision Tree as classifier (MICE-DT) in ascending

order. MICE-DT with descending and ascending order produced similar results and

only one is reported in this paper for brevity.

Dataset variable selection

A subset of variables from the public research SEER’s dataset[1] was used in this

experiment. The variables were selected after taking into account the characteristics

of the variables and their temporal availability, as some variables were more recently

introduced as compared to others. Two sets of variables were created: (i) a set of 8

variables with a small number of categories (small-set); and (ii) a larger set with

∼40 variables (large-set) that includes variables with a large number (hundreds)

of categories. We want to see the relative performances of the different synthetic

data generation approaches on a relatively easy dataset (small-set) and on a more

challenging dataset (large-set).

The SEER’s research dataset is composed of sub-datasets, where each sub-dataset

contains diagnosed cases of a specific cancer type collected from 1973 to 2015. For

this analysis we considered the sub-datasets from patients diagnosed with breast

cancer (BREAST), respiratory cancer (RESPIR), and lymphoma of all sites and

leukemia (LYMYLEUK). We used data from cases diagnosed between 2010 and

2015 due to the nonexistence of some of variables prior to this period. The number

of patient records in the BREAST, RESPIR, and LYMYLEUK datasets are 169,801;

112,698; and 84,132; respectively. We analyze the performance of the methods on

each dataset separately. Table 1 presents the variables selected. A pre-processing

step in some cases involves splitting a more complex variable into two variables, as

some variables originally contained both categorical and integer (count) values.

The number of levels (categories) in each variable is diverse. In the small-set

feature set the number of categories ranges from 1 to 14, while for the large-set

it ranges from 1 to 257. The precise number of levels for each variable is described

in the Appendix.

Figure 2 depicts the histogram of some variables in the BREAST small-set

dataset. Noticeably, the levels’ distributions are imbalanced and many levels are

underrepresented in the real dataset. For example, variable DX CONF mostly contains

records with the same level, and LATERAL only has records with 2 out of 5 possible

levels. This imbalance may inadvertently lead to disclosure of information in the

synthetic dataset, as the methods are more prone to overfit when the data has a

smaller number of possible record configurations.

Implementation details and hyper-parameter selection

When available we used the code developed by the authors of the paper proposing

the synthetic data generation method. For CLGP, we used the code from the au-

thors’ GitHub repository [47]. For MC-MedGAN, we also utilized the code from the

authors [48]. For the Bayesian networks, we used two Python packages: pomegranate

[1]https://seer.cancer.gov/data/
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[49] and libpgm [50]. All other methods were implemented by ourselves. The hyper-

parameter values used for all methods were selected via grid-search. The selected

values were those which provided the best performance for the log-cluster utility

metric. This metric was used as it is the only metric, in our pool of utility metrics,

that measures the similarity of the full real and synthetic data distributions, and not

only the marginal distributions or only the relationship across variables. The range

of hyper-parameter values explored for all methods and other additional details are

discussed in the appendix.

Results
We evaluated the methods described in Section ‘Methods’ on the subsets of the

SEER’s research dataset. To conserve space we only show results for the BREAST

cancer dataset. The complete set of results are provided in the Appendix. From our

empirical investigations, the conclusions drawn from the breast cancer dataset can

be extended to the LYMYLEUK and RESPIR datasets. Unless stated otherwise, in

all the following experiments, the number of synthetic samples generated is identical

to the number of samples in the real dataset: BREAST = 169,801; RESPIR =

112,698; and LYMYLEUK = 84,132.

On the small-set

From Table 2, we observe that many methods succeeded in capturing the statistical

dependence among the variables, particularly MPoM, MICE-LR, MICE-LR-DESC,

and MICE-DT. Synthetic data generated by these methods produced correlation

matrices nearly identical to the one computed from real data (low PCD). Data

distribution difference measured by log-cluster is also low. All methods showed a

high support coverage. As seen in Figure 2, BREAST small-set variables have only

a few levels dominating the existing records in the real dataset, while the remaining

levels are underrepresented or even nonexistent. This level imbalance reduces the

sampling space making the methods more likely to overfit and, consequently, exposes

more real patient’s information.

Figures 3 shows the distribution of some of the utility metrics for all variables. KL

divergences, shown in Figure 3c, are low for the majority of the methods, implying

that the marginal distributions of real and synthetic datasets are equivalent. KL

divergences for MC-MedGAN is reasonably larger compared to the other methods,

particularly due to the variable AGE DX (Figure 4c).

Regarding CrCl-RS in Figure 3a, we observe that all methods are capable of

learning and transferring variable dependencies from the real to the synthetic data.

MPoM presented the lowest variance while MC-MedGAN has the largest, imply-

ing that MC-MedGAN is unable to capture the dependence of some of the vari-

ables. From Figure 4a, we identify AGE DX, PRIMSITE, and GRADE as the most

challenging variables for MC-MedGAN. AGE DX and PRIMSITE are two of the

variables with the largest set of levels, with 11 and 9, respectively. It suggests that

MC-MedGAN potentially faces difficulties on datasets containing variables with a

large number of categories.

From Figure 3b, we clearly note that the synthetic data generated by MC-

MedGAN does not mimic variable dependencies from the real dataset, while all
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other methods succeeded in this task. Looking at the difference between CrCl-RS

and CrCl-SR, one can infer how close the real and synthetic data distributions are.

Performing well on CrCl-RS but not on CrCl-SR indicates that MC-MedGAN only

generated data from a subspace of the real data distribution that can be attributed

to partial modal collapse, which is a known issue for GANs [51, 52]. This hypothesis

is corroborated by the support coverage value of MC-MedGAN that is the lowest

among all methods.

Figure 5 shows the attribute disclosure metric computed on BREAST cancer

data with the small-set list of attributes, assuming the attacker tries to infer

four (top) and three (bottom) unknown attributes, out of eight possible, of a given

patient record. Different numbers of nearest neighbors are used to infer the unknown

attributes, k=[1, 10, 100]. From the results, we notice that the larger the number

of the nearest neighbors k, the lower the chance of an attacker successfully uncover

the unknown attributes. Using only the closest synthetic record (k=1) produced a

more reliable guess for the attacker. When 4 attributes are unknown by the attacker,

he/she could reveal about 70% of the cases, while this rate jumps to almost 100%

when 3 attributes are unknown. Notice that IM consistently produced one of the best

(lowest) attribute disclosures across all cases, as it does not model the dependence

across the variables. MC-MedGAN shows significantly low attribute disclosure for

k=1 and when the attacker knows 4 attributes, but it is not consistent across other

experiments with BREAST data. MC-MedGAN produced the highest value for

scenarios with k=10 and k=100.

Membership disclosure results provided in Figure 6 for BREAST small-set shows

a precision around 0.5 for all methods across the entire range of Hamming distances.

This means that among the set of patient records that the attacker claimed to be

in the training set, based on the attacker’s analysis of the available synthetic data,

only 50% of them are actually in the training set. Regarding the recall, all the

methods except MC-MedGAN showed a recall around 0.9 for the smallest prescribed

Hamming distances, indicating that the attacker could identify 90% of the patient

records actually used for training. MC-MedGAN presented much lower recall in

these scenarios, therefore it is more effective in protecting private patient records.

For larger Hamming distances, as expected, all methods obtain a recall of one as

there will be a higher chance of having at least one synthetic sample within the larger

neighborhood (in terms of Hamming distance). Therefore, the attacker claims that

all patient records are in the training set.

On the large-set

The large-set imposes additional challenges to the synthetic data generation task,

both in terms of the number of the variables and the inclusion of variables with a

large number of levels. Modeling variables with too many levels requires an extended

amount of training samples to properly cover all possible categories. Moreover, we

noticed that in the real data a large portion of the categories are rarely observed,

making the task even more challenging.

From Table 3 we observe that MICE-DT obtained significantly superior data util-

ity performance compared to the competing models. As MICE-DT uses a flexible

decision tree as the classifier, it is more likely to extract intricate attribute relation-

ships that are consequently passed to the synthetic data. Conversely, MICE-DT
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is more susceptible to memorizing the private dataset (overfitting). Even though

overfitting can be alleviated by changing the hyper-parameter values of the model,

such as the maximum depth of the tree and the minimum number of samples at

leaf nodes, this tuning process is required for each dataset which can be very time

consuming. Using a MICE method with a less flexible classifier, such as MICE-LR,

can be a viable alternative.

It is also worth mentioning that the order of the variables in MICE-LR has a sig-

nificant impact, particularly in capturing the correlation of the variables measured

by PCD. MICE-LR with ascending order produced a closer correlation matrix to

the one computed in the real dataset, when compared to MICE-LR with attributes

ordered in a descending manner. Our hypothesis is that by positioning the attributes

with a smaller number of levels first, the initial classification problems are easier

to solve and will possibly better capture the dependence among the attributes, and

this improved performance will be carried over to the subsequent attributes. This

is similar to the idea of curriculum learning [53].

Overall, CLGP presents the best data utility performance on the larget-set,

consistently capturing dependence among variables (low PCD and CrCls close to

one), and producing synthetic data that matches the distribution of the real data

(low log-cluster). CLGP also has the best support coverage, meaning that all the

existent categories in the real data also appear in the synthetic data. On the other

extreme, MC-MedGAN was clearly unable to extract the statistical properties from

the real data. As expected, IM also showed poor performance due to its lack of

variables’ dependence modeling.

As observed in the small-set variable selection, MC-MedGAN performed poorly

on CrCl-SR metric compared to CrCl-RS (Figure 7) and only covered a small part

of the variables’ support in the real dataset. From Figures 8a and 8b we note

that a subset of variables are responsible for MC-MedGAN’s poor performance on

CrCl-SR and CrCl-RS. Figure 8b also indicates that MICE-LR-based generators

struggled to properly generate synthetic data for some variables. We also highlight

the surprisingly good results obtained by BN on CrCl-RS and CrCl-SR metrics,

considering the fact that BN approximates the joint distribution using a simple

first-order dependency tree.

Figure 9 shows the attribute disclosure for the BREAST large-set dataset for

several numbers of nearest neighbors (k) and three different scenarios: when the

attacker seeks to uncover 10, 6, and 3 unknown attributes, assuming she/he has

access to the remaining attributes in the dataset. Overall, all methods but MC-

MedGAN revealed almost 100% of the cases for values of k = 1, when 3 attributes

are unknown, but decrease to about 50% when 10 attributes are unknown. Clearly,

MC-MedGAN has the best attribute disclosure as a low percentage of the unknown

attributes of the real records are revealed. However, MC-MedGAN produces syn-

thetic data with poor data utility performance, indicating that the synthetically

generated data does not carry the statistical properties of the real dataset. MC-

MedGAN relies on continuous embeddings of categorical data obtained via an au-

toencoder. We believe that the complexity and noisiness of the SEER data makes

learning continuous embeddings of the categorical variables (while preserving their

statistical relationships) very difficult. In fact, recent work [54] has shown that au-

toencoders can induce a barrier to the learning process, as the GAN will completely
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rely on the embeddings learned by the autoencoder. Additionally, works such as

[55] have reported that while GANs often produce high quality synthetic data (for

example realistic looking synthetic images), with respect to utility metrics such as

classification accuracy they often underperform compared to likelihood based mod-

els. IM has the second best attribute disclosure, more pronounced for k > 1, but as

already seen, also fails to capture the variables’ dependencies. The best data util-

ity performing methods (MICE-DT, MPoM, and CLGP) present a high attribute

disclosure.

For membership disclosure, Figure 10, we notice that for exact match (Hamming

distance 0), some of the methods have a high membership disclosure precision,

indicating that from the set of patient records an attacker claimed to be present

in the training set, a high percentage of them (around 90% for MICE-DT) were

correct (high precision). However, there were many true records that the attacker

inferred as negative (false negative). This can be seen by the lower recall values.

A conservative attacker can be successful here for MICE-DT’s synthetic dataset.

As discussed previously, MICE-DT is a more flexible model that provides a high

data utility performance, but is more prone to release private information in the

synthetic dataset. For Hamming distances larger than 6, the attacker claims true

for all patient records, as the Hamming distance is large enough to always have at

least one synthetic sample within the distance threshold. It is worth mentioning

that it is hard for an attacker to easily identify the optimal Hamming distance to

be used to maximize its utility, except if the attacker has a priori access to two

sets of patients records, one of which is present in the training set and the other is

absent from the training set.

Effect of varying synthetic data sample sizes on the evaluation metrics

The size of the synthetic dataset has an impact on the evaluation metrics, especially

on the privacy metrics. For example, a membership attack may be more difficult if

only a small synthetic sample size is provided. To assess the impact of the synthetic

data sample size on the evaluation metrics, we performed experiments with different

sample sizes of BREAST simulated data: 5,000; 10,000; and 20,000 samples. As a

reference, the results provided so far have considered a synthetic sample dataset

of the same size as the real dataset, which is approximately 170,000 samples for

BREAST.

Table 4 presents the log-cluster, attribute disclosure, and membership disclosure

performance metrics for varying sizes of synthetic BREAST small-set datasets.

We observe an improvement (reduction) of the log-cluster performance with an in-

crease in the size of the synthetic data. A significant reduction is seen for MPoM,

BN, and all MICE variations. This is likely due to the fact that with an increase in

the size of the synthetic dataset, a better estimate of the synthetic data distribu-

tion is obtained. Models with lower utility metrics, such as IM and MC-MedGAN,

do not show large differences in performance over the range of 5,000 to 170,000

synthetic samples. Similar behavior to log-cluster was also observed for the other

utility metrics, which are omitted for the sake of brevity.

The impact of sample size on the privacy metrics on the BREAST small-set

are shown in Tables 5, and 6. For attribute disclosure (Table 5), we note that for
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the majority of the models a smaller impact on the privacy metric is observed

when a larger k (number of nearest samples) is selected. For k = 1, flexible models

such as BN, MPoM and all MICE variations show a more than 10% increase in

attribute disclosure over the range of 5,000 to 170,000 synthetic samples. CLGP

is more robust to the sample size, increasing only by 3%. In terms of membership

disclosure (Table 6), precision is not affected by the synthetic sample size, while

recall increases as more data is available. All models show an increase of 10% in

recall over the range of 5,000 to 170,000 samples. This increase can be attributed

to the higher probability of observing a similar real patient to a synthetic patient,

as more patient samples are drawn from the synthetic data model.

We also ran similar experiments for the large-set with 40 attributes. The re-

sults are shown in Tables 7, 8, and 9. Similar conclusions as those drawn for the

small-set may be drawn for the large-set.

Running time and computational complexity

Figure 11 shows the training time for each method on the small-set and large-set

of variables. For the range of models evaluated in this paper, the training times run

from a few minutes to several days. This is primarily due to the diversity of the

approaches and inferences considered in this paper. For MPoM, we performed fully

Bayesian inference which involves running MCMC chains to obtain posterior sam-

ples, which is inherently costly. For CLGP, we performed approximate Bayesian

inference (variational Bayes) which is computationally light compared to MCMC,

however, inversion of the covariance matrix in Gaussian processes is the primary

computational bottle-neck. The computation complexity of MC-MedGAN is pri-

marily due to increased training time requirements for achieving convergence of

the generator and the discriminator. The remaining approaches considered in this

paper are primarily frequentist approaches based on optimization with no major

computational bottle-necks. However, for the generation of synthetic datasets, the

computational running time is not utterly important, since the models may be

trained off-line on the real dataset for a considerable amount of time, and the final

generated synthetic dataset can be distributed for public access. It is far more im-

portant that the synthetic dataset captures the structure and statistics of the real

dataset, such that inferences obtained on the synthetic dataset closely reflects those

obtained on the real dataset.

Edit checks

The SEER program developed a validation logic, known as “edits”, to test the

quality of data fields. The SEER edits are executed as part of cancer data collection

processes. Edits trigger manual reviews of unusual values and conflicting data items.

The SEER edits are publicly available in a Java validation engine developed by

Information Management Services, Inc. (software[2]). All SEER data released to

the public passes edits as well as several other quality measures.

There are approximately 1,400 SEER edits that check for inconsistencies in data

items. The edit checks are basically if-then-else rules designed by data standard

setters. Rules are implemented as small pieces of logic; each edit returns a Boolean

[2]https://github.com/imsweb/validation
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value (true if the edit passes, false if it fails). For example, the edit that checks

for inconsistent combinations of “Behavior” and “Diagnostic Confirmation” vari-

ables is represented as: “If Behavior Code ICD-O-3[523] = 2 (in situ), Diagnostic

Confirmation[490] must be 1,2 or 4 (microscopic confirmation)”.

Our purpose for using this software is to show that despite not explicitly encoding

for these rules, they are implicit in the real data used to train the models (since

that data passed these checks) and the models are able to generate data that for

the most part does not conflict with these rules.

We ran the validation software on 10,000 synthetic BREAST samples and the

percentage of records that failed in at least one of the 1400 edit checks are presented

in Table 10. All methods showed less than 1% of failures on the 10 variables set.

As expected, IM has the largest number of failures, as it does not take variables

dependence into account when sampling synthetic data. MICE-DT, MPoM, and

BN performed best. On the larger set, 40 variables, MC-MedGAN and MICE-DT

show less than 1% of failures. However, as previously discussed, these two methods

provided samples with high disclosure probability, and also MC-MedGAN failed to

capture statistical properties of the data. We also observe that BN presented less

than 2% of failed samples. Results for LYMYLEUK and RESPIR are not presented

in the paper, as some information required by the validation software is not available

in the public (research) version of the SEER data.

It is also worth mentioning that, in practice, synthetically generated cancer cases

that failed to pass at least one edit check may simply be excluded from the final

list of cases to be released.

Discussion
High quality synthetic data can be a valuable resource for, among other things,

accelerating research. There are two opposing facets to high quality synthetic data.

On one hand, the synthetic data must capture the relationships across the various

features in the real population. On the other hand, the privacy of the subjects

included in the real data must not be disclosed in the synthetic data. Here, we

have presented a comparative study of different methods for generating categorical

synthetic data, evaluating each of them under a variety of metrics that assess both

aspects described above: data utility and privacy disclosure. Each metric evaluates

a slightly different aspect of the data utility or disclosure. While there is some

redundancy among them, we believe that in combination, they provide a more

complete assessment of the quality of the synthetic data. For each method and each

metric, we provided a brief discussion on their strengths and shortcomings, and

hope that this discussion can be helpful in guiding researchers in identifying the

most suitable approach for generating synthetic data for their specific application.

The experimental analysis was performed on data from the SEER research

database on 1) breast, 2) lymphoma and leukemia, and 3) respiratory cancer cases

diagnosed from 2010 to 2015. Additionally, we performed the same experiments on

two sets of categorical variables in order to compare the methods under two chal-

lenge levels. Specifically, in the first set, 8 variables were included such that the

maximum number of levels (i.e., number of unique possible values for the feature)

was limited to 14. The larger feature set encompassed 40 features, including features
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with up to over 200 levels. Increasing the number of features and the number of

levels per features results in a substantially larger parameter space to infer, which is

aggravated by the absence or limited number of samples representing each possible

combination.

From the experimental results on the two datasets of distinct complexity,

small-set and large-set, we highlight the key differences:

• The small-set records have fewer and less complex variables (in terms of

the number of sub-categories per variable) than the large-set. Thus the

learning problem is considerably easier and this is observed in the metric CrCl-

RS provided in Tables 2 and 3, where the small-set performs consistently

better than the large-set across all datasets (BREAST, LYMYLEUK, and

RESPIR).

• SEER edit checks consist of a set of rules combined via various logical oper-

ators. For the large-set, the rules are significantly more complex and the

chances of failure are higher. This is observed in Table 10, where the percent-

age of failure is higher for the large-set compared to the small-set, across

all methods.

• As the dimensionality (as well as complexity, as some of the variables have a

larger number of sub-categories) of the records in the large-set is consid-

erably higher than the records in the small-set, in general, it is harder for

an attacker to identify the real patient records used for model training. This

is observed in Figure 10, where to achieve similar recall values for the mem-

bership attacks, the Hamming neighborhood has to be considerably larger for

the large-set compared to the small-set.

The results showed that Bayesian Networks, Mixture of Product of Multinomials

(MPoM) and CLGP were capable of capturing variables relationships, considering

the data utility metrics used for comparison. Surprisingly, the generative adversarial

network-based model MC-MedGAN failed to generate data with similar statistical

characteristics to the real dataset.

Conclusions
In this paper, we presented a thorough comparison of existing methodologies to

generate synthetic electronic health records (EHR). For each method, the process

is as follows: given a set of private and real EHR samples, fit a model, and then

generate new synthetic EHR samples from the learned model. By learning from

real EHR samples, it is expected that the model is capable of extracting relevant

statistical properties of the data.

From the performed experimental analysis, we observed that there is no single

method that outperforms the others in all considered metrics. However, a few meth-

ods have shown the potential to be of great use in practice as they provide synthetic

EHR samples with the following two characteristics: 1) statistical properties of the

synthetic data are equivalent to the ones in the private real data, and 2) private

information leakage from the model is not significant. In particular, we highlight the

methods Mixture of Product of Multinomials (MPoM) and categorical latent Gaus-

sian process (CLGP). Other methods, such as the Generative Adversarial Network

(GAN), were not capable of generating realistic EHR samples.



Goncalves et al. Page 21 of 31

Future research directions include handling variable types other than categorical,

specifically continuous and ordinal. A more in-depth investigation of the limitations

of GANs for medical synthetic data generation is also required.
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Figure 1: Schematic view of the cross-classification metric computation. It consists

of the following steps: (1) real data is split into training and test sets; (2) classifier

is trained on the training set; (3) classifier is applied on both test set (real) and

synthetic data; and (4) the ratio of the classification performances is calculated.
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Figure 2: Histogram of four BREAST small-set variables from the real dataset.

Levels’ distributions are clearly imbalanced.
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Figure 3: Data utility performance over all variables presented as boxplots on

BREAST small-set. (a) CrCl-RS, (b) CrCl-SR, and (c) KL divergence for each

attribute.
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Figure 4: Heatmaps displaying CrCl-RS, CrCl-SR, KL divergence, and support

coverage average computed over 10 independently generated synthetic BREAST

small-set datasets.
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BREAST small-set dataset. Top plot shows results for the scenario that an at-

tacker tries to infer 4 unknown attributes out of 8 attributes in the dataset. Bottom

plot presents the results for 3 unknown attributes.
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Figure 6: Precision and recall of membership disclosure for all methods. BREAST

small-set dataset. MC-MedGAN presents the best performance.
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Figure 7: Data utility performance shown as boxplots on BREAST large-set.
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Figure 8: Heatmaps displaying the average over 10 independently generate synthetic

datasets of CrCl-RS, CrCl-SR, KL divergence, and support coverage, at a variable

level on large-set. BREAST dataset.

Table 1: Two sets of variables from SEER’s research dataset. small-set contains

variables with low levels; while large-set contains a large number of variables

including a few with large number of levels. ∗variable PRIMSITE is only consid-

ered for BREAST dataset as it has a large number of levels for LYMYLEUK and

RESPIR. † indicates that the variable is not present in the LYMYLEUK dataset. ◦

indicates that the variable is not present in the RESPIR dataset.

Feature set Variables
small-set AGE DX, BEHO3V, DX CONF, GRADE, LATERAL, PRIMSITE∗, SEQ NUM,

SEX
large-set AGE DX, BEHO3V, CS1SITE, CS2SITE, CS3SITE, CS4SITE†, CS5SITE†,

CS6SITE†, CS7SITE†◦, CS15SITE†◦, CSEXTEN, CSLYMPHN, CSMETSDX,
CSMETSDXBR PUB, CSMETSDXB PUB, CSMETSDXLIV PUB, CSMETS-
DXLUNG PUB, CSMTEVAL, CSRGEVAL, CSTSEVAL, CSVCURRENT, CSV-
FIRST, DX CONF, GRADE, HISTO3V, LATERAL, MAR STAT, NHIADE,
NO SURG, PRIMSITE, RACE1V, REC NO, REG, REPT SRC, SEQ NUM, SEX,
SURGSITF, TYPE FU, YEAR DX, YR BRTH
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Figure 9: Attribute disclosure for several values of nearest neighbors (k). BREAST

large-set dataset. Results show attribute disclosure for the case an attacker seeks

to infer 10, 6, and 3 unknown attributes, assuming she/he has access to the remain-

ing attributes in the dataset.
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Table 2: Average and std of data utility metrics computed on BREAST dataset using

the small-set variables selection. CrCl-RS and CrCl-SR are the cross-classification

metric computed on real→ synthetic (RS) and synthetic→ real (SR), respectively.

Metrics were computed from 10 synthetically generated datasets. The symbols on

the right side of metric’s name indicate: ↑ the higher the better, ↓ the lower the

better, and (1) the closer to one the better.

PCD ↓ Log-Cluster ↓ CrCl-RS (1) CrCl-SR (1) Supp. Coverage ↑
Method

IM 0.73 (0.0) -5.38 (0.87) 0.96 (0.0) 1.0 (0.0) 0.99 (0.01)
BN 0.28 (0.01) -8.38 (1.12) 0.99 (0.0) 1.0 (0.0) 0.98 (0.01)
MPoM 0.03 (0.01) -10.5 (0.46) 1.0 (0.0) 1.0 (0.0) 1.0 (0.01)
CLGP 0.17 (0.01) -7.8 (0.65) 0.99 (0.01) 1.0 (0.01) 1.0 (0.0)
MC-MedGAN 0.76 (0.01) -3.17 (0.1) 1.0 (0.01) 0.75 (0.0) 0.95 (0.01)
MICE-LR 0.07 (0.01) -8.34 (0.29) 0.99 (0.0) 1.0 (0.0) 1.0 (0.0)
MICE-LR-DESC 0.06 (0.01) -9.36 (0.49) 0.99 (0.0) 1.0 (0.0) 1.0 (0.01)
MICE-DT 0.02 (0.0) -11.61 (0.3) 1.01 (0.0) 1.0 (0.0) 0.99 (0.01)

Table 3: Average and std of data utility metrics computed on the BREAST dataset

considering the large-set with 40 variables. CLGP presented the overall best per-

formance. It was not possible to compute PCD metric for MC-MedGAN as the

method generated at least one variable with a unique value. The symbols on the

right side of metric’s name indicate: ↑ the higher the better, ↓ the lower the better,

and (1) the closer to one the better.

PCD ↓ Log-Cluster ↓ CrCl-RS (1) CrCl-SR (1) Supp. Coverage ↑
Method

IM 8.94 (0.01) -3.56 (0.12) 0.7 (0.0) 1.0 (0.0) 0.99 (0.0)
BN 4.88 (0.02) -4.51 (0.38) 0.94 (0.0) 1.0 (0.0) 0.99 (0.0)
MPoM 2.3 (0.01) -7.83 (0.38) 0.85 (0.0) 1.01 (0.0) 0.99 (0.0)
CLGP 0.69 (0.02) -8.2 (0.27) 0.95 (0.0) 1.02 (0.0) 1.0 (0.0)
MC-MedGAN – (–) -1.39 (0.0) 0.76 (0.05) 0.58 (0.0) 0.16 (0.0)
MICE-LR 1.31 (0.04) -5.77 (0.13) 0.87 (0.0) 1.07 (0.01) 0.99 (0.0)
MICE-LR-DESC 2.94 (0.07) -5.09 (0.14) 0.85 (0.0) 1.04 (0.0) 1.0 (0.0)
MICE-DT 0.14 (0.02) -11.14 (0.53) 1.01 (0.0) 1.0 (0.0) 0.99 (0.0)
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Table 4: LogCluster performance metric on several synthetic sample sizes. BREAST

small-set with 8 variables. Values shown are the average performance over 10

independently generated synthetic samples.

# of synthetic samples

5k 10k 20k ∼170k (all)

IM -5.072 -4.978 -5.118 -6.000
BN -6.747 -7.053 -7.533 -8.528
MPoM -7.106 -7.991 -8.739 -10.191
CLGP -6.991 -7.183 -7.360 -8.056
MC-MedGAN -3.177 -3.170 -3.238 -3.185
MICE-LR -6.924 -7.275 -7.797 -8.323
MICE-LR-DESC -7.232 -7.875 -8.422 -9.440
MICE-DT -7.141 -7.867 -8.863 -11.603

Table 5: Attribute disclosure on several synthetic sample sizes. BREAST small-set

with 8 variables. Values shown are the average performance over 10 independently

generated synthetic samples.

# of synthetic samples

5k 10k 20k ∼170k (all)

k=1 k=10 k=1 k=10 k=1 k=10 k=1 k=10

IM 0.591 0.255 0.642 0.239 0.625 0.284 0.669 0.325
BN 0.590 0.333 0.646 0.301 0.671 0.332 0.701 0.338
MPoM 0.621 0.314 0.658 0.310 0.688 0.311 0.730 0.350
CLGP 0.666 0.305 0.674 0.313 0.685 0.324 0.693 0.350
MC-MedGAN 0.518 0.341 0.531 0.391 0.514 0.392 0.575 0.443
MICE-LR 0.633 0.320 0.635 0.320 0.678 0.306 0.741 0.314
MICE-LR-DESC 0.620 0.314 0.663 0.320 0.705 0.358 0.721 0.323
MICE-DT 0.607 0.319 0.653 0.333 0.654 0.359 0.710 0.379

Table 6: Membership disclosure (Hamming distance=0.1, r=1000) on several syn-

thetic sample sizes. BREAST small-set with 8 variables. Values shown are the

average performance over 10 independently generated synthetic samples.

# of synthetic samples

5k 10k 20k ∼170k (all)

Precision Recall Precision Recall Precision Recall Precision Recall

IM 0.491 0.842 0.493 0.905 0.493 0.927 0.497 0.97
BN 0.491 0.848 0.496 0.905 0.492 0.93 0.499 0.985
MPoM 0.492 0.872 0.496 0.906 0.498 0.942 0.499 0.99
CLGP 0.496 0.867 0.497 0.913 0.498 0.943 0.500 0.988
MC-MedGAN 0.488 0.585 0.486 0.627 0.482 0.651 0.491 0.751
MICE-LR 0.497 0.868 0.497 0.909 0.500 0.957 0.499 0.988
MICE-LR-DESC 0.489 0.854 0.496 0.909 0.494 0.94 0.500 0.991
MICE-DT 0.496 0.86 0.498 0.924 0.499 0.952 0.502 0.994

Table 7: Breast cancer with 40 variables. Log-cluster performance metric.

# of synthetic samples

5k 10k 20k ∼170k (all)

IM -3.524 -3.583 -3.553 -3.550
BN -4.416 -4.489 -4.658 -4.539
MPoM -6.675 -7.132 -7.515 -7.753
CLGP -7.240 -7.632 -8.047 -8.235
MC-MedGAN -1.388 -1.388 -1.388 -1.388
MICE-LR -5.577 -5.605 -5.735 -5.862
MICE-LR-DESC -4.939 -5.009 -5.083 -5.173
MICE-DT -7.036 -7.713 -8.512 -10.593
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Table 8: Attribute disclosure performance metric when the attacker wants for un-

cover 5 unknown attributes. Breast cancer with 40 variables.

# of synthetic samples

5k 10k 20k ∼170k (all)

k=1 k=10 k=1 k=10 k=1 k=10 k=1 k=10

IM 0.931 0.876 0.946 0.886 0.955 0.887 0.971 0.883
BN 0.947 0.932 0.954 0.942 0.967 0.945 0.982 0.946
MPoM 0.952 0.945 0.964 0.950 0.967 0.949 0.981 0.951
CLGP 0.958 0.950 0.968 0.949 0.974 0.950 0.987 0.953
MC-MedGAN 0.024 0.024 0.024 0.024 0.024 0.024 0.024 0.024
MICE-LR 0.948 0.936 0.960 0.944 0.966 0.948 0.986 0.959
MICE-LR-DESC 0.954 0.946 0.963 0.946 0.967 0.950 0.984 0.955
MICE-DT 0.959 0.952 0.973 0.954 0.983 0.957 0.998 0.972

Table 9: Membership disclosure (Hamming distance=0.2, r=1000) on several syn-

thetic sample sizes. BREAST large-set with 40 variables. Values shown are the

average performance over 10 independently generated synthetic samples.

# of synthetic samples

5k 10k 20k ∼170k (all)

Precision Recall Precision Recall Precision Recall Precision Recall

IM 0.488 0.599 0.496 0.680 0.496 0.745 0.497 0.867
BN 0.497 0.863 0.496 0.918 0.497 0.918 0.498 0.966
MPoM 0.492 0.826 0.491 0.864 0.492 0.891 0.497 0.945
CLGP 0.492 0.880 0.493 0.903 0.498 0.937 0.500 0.981
MC-MedGAN 1.000 0.002 1.000 0.002 1.000 0.002 1.000 0.002
MICE-LR 0.491 0.842 0.497 0.884 0.493 0.912 0.498 0.964
MICE-LR-DESC 0.493 0.809 0.496 0.857 0.492 0.884 0.496 0.955
MICE-DT 0.496 0.899 0.498 0.936 0.499 0.955 0.502 0.996

Table 10: Percentage of SEER edit check failures: BREAST cancer with 10 and 40

variables.

Method % of Failures
10vars 40vars

IM 0.53 (0.08) 6.2 (0.02)
BN 0.04 (0.01) 1.95 (0.09)
MPoM 0.01 (0.02) 4.04 (0.12)
CLGP 0.28 (0.08) 3.81 (0.22)
MC-MedGAN 0.14 (0.06) 0(0)
MICE-LR 0.12 (0.03) 4.15 (0.1)
MICE-LR-DESC 0.19 (0.05) 4.66 (0.04)
MICE-DT 0.0 (0.0) 0.06 (0.03)


