
Sandia
National
Laboratories

How to Interface with Sandia's
"Simulink S-Function Interface"
Raymond E. Fasano

July 2020

U.S. DEPARTMENT OF

ei ENERGY Nk7
National Nuclear Security AcIminl

Sandia National Laboratories is a multimission laboratory
managed and operated by National Technology and Engineering

Solutions of Sandia, LLC, a wholly owned subsidiary of Honeywell
International Inc., for the U.S. Department of Energy's National
Nuclear Security Administration under contract DE-NA0003525.

SAND2020-7415R

Physics-Based

Dynamic Model

of Nuclear

Power Plant

[(Simulink)

Data Transfer Interface

External Python

Interface

Shared

State Variables

St
at
e
Va
ri
ab
l

o
o.fa

cu

E

Ts i
S-Function

1.1110111-

Co
nt

ro
l
Si

gn
al

s

Control Signals

State variables
 t tit

Real or

' ' Emulated
Control S2gnbls

PLC

Shared

memo

 i
FIGURE 1: SHARED MEMORY INTERFACE FOR DATA FLOW BETWEEN SIMULINK

SIMULATION MODEL AND PLCs [For reference]

C Headings used in Sandia's "Simulink S-Function Interface" (Fig. 1)

#include <errno.h>
#include <math.h>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <unistd.h>
#include <sys/types.h>
#include <sys/ipc.h>

#include <sys/shm.h>
#include <semaphore.h>
#include <sys/stat.h>
#include <sys/fcntl.h>
#include <sys/mman.h>
#include "rtw modelmap.h"
#include "builtin_typeid_types.h"
#include "rtwtypes.h"

Number of publishpoints shared memory key: 10610
Publishpoint value shared memory key: 10613
Publishpoint semaphore name• "publish_sem"
How publishpoint semaphores are created: sem_open("publish_sem", O_CREAT, 0644, 0)
Updatepoint fifo file location: "Amp/updates_fifo"
Updatepoint semaphore name: "updates_sem"
How updatepoint semaphores are create: sem_open("publish sem", 0 CREAT, 0644, 0)

The "Simulink S-Function Interface" must do the following operations in order:
Initialization
1) Number of publish points must be written to the number of publishpoints shared memory

location
2) The update fifo file location created open("/tmp/updates_fifo", O_RDONLY O_TRUNC I

O_NONBLOCK)
3) The publishpoint shared memory location created

2

4) The publishpoint and updatepoint semaphores created

Runtime
1) All publishpoints are written to the shared memory location using the following string format

a) VARIABLE_NAME:VARIABLE_TYPE:VARIABLE_VALUE
i) Each publishpoint must be a length of 256 bytes
ii) Only two VARIABLE_TYPES are supported Boolean and doubles
iii) All publishpoints must be published at the same time
iv) Call the publishpoint semaphore each time before data is published to shared memory

2) Read the updatefifo for updatepoints using the following format
a) VARIABLE_NAME:VARIABLE_TYPE:VARIABLE_VALUE

i) If there is not a message in the updatefifo do nothing
ii) If there is a message update the Simulink model
iii) Only one updatepoint is updated each time the updatefifo is read
iv) Call the updatepoint semaphore each time before the updatefifo is read

3) The rate at which publishpoints and updatepoints are renewed is determined by the
"Simulink S-Function Interface" but should be as often as possible to avoid timing issues

A visual idea of what the publishpoint shared memory looks like during runtime:
Pressure:DOUBLE:100 Temperature:DOUBLE:670
Pressure_2 :DOUBLE:10000 Temperature_2:DOUBLE:273

A visual idea of what the updatepoint fifo looks like during runtime:
Heater:DOUBLE:58

3

