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Key Areas of Interest

Goal: Predict heat transfer due to fire.

Radiant heat transfer is dominant.

o Soot is dominant source and sink for radiative

transport.

> Soot also depends on temperature...
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Overview of modeling approach

f \ / Sub-grid models: \

CFD-resolved level
solves conserved scalars Relate thermo-chemical
+«—> state to conserved scalars.

Removes many source
term closure problems. Provide source and sink

K j tm'ms for radiation, soot, etcj
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o Reference reacting scalars to conserved scalars
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Flamelet-based Turbulent Combustion Models
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° Strong radiative losses: non-adiabatic down through radiative quenching,

> Past work on non-adiabatic flamelets largely focused on engineered combustion, no radiative

quenching
o Thme and Pitsch, 2008
° Mueller and Pitsch, 2013
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5| Non-Adiabatic Flamelets

To allow for radiative quenching and generalize to other heat losses, a new heat-loss term is

proposed:

° Proportional to y for complete cooling

° Linear in temperature: better off-stoich coverage

With the larger sink term, flame cools down to ambient T

° This is ‘cooled product’, not reactants mixing

Enthalpy defect vy is introduced ¥=H — Hyq

550 . Enthalpy defect due to radiation
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6| Unsteady flamelet cooling

o Heat loss and heat release both scale by y. . P2H T(H.2) - T
° Normalize by (T, -T) to retain the same magnitude ——+ = =lgx ’
. . at 2 8Z Tmaw - Too
with time.
° Timescale matches estimated enthalpy response time -
. : o
> O(0.1-1s) for complete cooling at lower y range N\
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.1 Tabulation

Tabulation of y-based enthalpy defect approach is preferred for fire and similar scenarios
over progress variable approach.

° Progress variable predicts ignition delay, local quenching/re-ignition for fast mixing.
> No heat losses are associated with progress variable decrement.

° y 1s orthogonal to y.

Sub-filter PDF applied to the
mixture fraction: results in 4-d table
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: | Tabulation — orthogonal transformation

Z . Z<Z,
To generate structured table, presumed form of y(£): 7 = 7o F\(Z,Z,) = { Zl_-—ZZ . 7> 2,

~

_ Y
- 1 5 s
Js Fy(Z,Z0) vz(Z,2"%)dz

° Extract table location from convolved form, F. Yo

> Store results in B-splines.
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° Logarithmic spacing for Z”?
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»1 Radiation Model

8({;—5{ +V - (puH) =V - (pDVH) — (4acT* — aG)

emission absorption

Full interaction between radiation and flame is important for an accurate
temperature prediction

> Participating media radiation

Discrete-ordinate radiative transport equation

G = [1(s)d s-VI(s)+al(s)=e y

a4 = Qgqs + Qs00t and e = €gas + €500t

G500t = (—375000 + 1735T)pM/ psoor

N

> Both gas and soot contribute to absorption and emission sources
€soot = asootUT4/7r

Radiation sources are precomputed in the table.

Radiative transport equation is solved for 48 directions.



10| Simple representations of soot evolution P

Soot formation & evolution is still a challenge

> Nucleation, surface reaction, coagulation, oxidation, etc.

i

Slower evolution than main flame chemistry

° Quasi-steady assumption is not adequate

> Correlation with mixture fraction is poor

Employ empirical models. Scale by smoke point...
wiki.gekgasifier.com

> Bx: 2-equation model:
(Nucl.) = 54NAM6—21100/T

RoT
: : : - 1/2
pN: Number density, pM: Mass concentration (Coag.) = 24RoT 42 (pNY?
8pN psoorNa P
—— + V- (pulN) = (Nucl.) — (Coag.
ot + el = (el —i(Cong) (Surf.) = 11700 (—X;’;Zﬁp> e~ 12000/T « AREA
0
opM . Xo,P XonP
o1 + V- (puM) = W,(Nucl.) + (Surf.) — (Oxid.) (Oxid.) = <500ﬁT1/26—20000/T 4 4'2325ﬁT1/2) « AREA
0

° Coefficients are tuned for fuel and/or configuration.

> Baseline adjustments using smoke point scaling,



+ 1 Model Evaluation - Laminar Flame

SIERRA/Fuego was used for model implementation and simulations

> SIERRA: Sandia’s engineering mechanics simulation code suite

° Fuego: low-Ma reacting turbulent flow solver

Evaluation with a laminar C,H, flame

> Cotlow sooting jet (Santoro et al. 1983, Smyth 1999)

° 3D mesh for the radiation solver,

> ~10000 cells at a symmetric plane /\
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21 Laminar Flame Results

Temperature matches downstream

> Enthalpy defect (radiation source) is correctly modeled

Maximum soot volume fraction agrees well with the experiment
> Soot develops eatlier and not fully oxidized

> Conventional model coefficients for ethylene were used - there are better predictions elsewhere where
coefficients & model forms were tuned
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13| Turbulent Jet Flame Radiant Fractions

C2H4 jet flame RANS simulations

> Soot predictions reasonable but low.
> Radiation fraction is slightly high with basic models

> (Gas contribution is significant—adjust to account for
banded nature. Similar to match methanol and methane
plume radiant fractions.
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14| Turbulent Fire Plume — C,H,

Configuration follows FLAME facility, Sandia’s indoor pool fire/fire plume test facility.

> LES closure with sub-filter kinetic energy one-equation model or Smagorinski model.
° Mesh resolution approx. 1 cm? near base. Roughly 3M elements.

> Second order numerics in time and space.

° Fuel is ethylene or heptane, specified mass flux.
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15| Turbulent Fire Plume — C,H,,

Configuration follows FLAME facility, Sandia’s indoor pool fire/fire plume test facility.

o

LES closure with sub-filter kinetic energy one-equation model or Smagorinski model.

(o]

Mesh resolution approx. 1 cm? near base. Roughly 3M elements.

(¢]

Second order numerics in time and space.

o

Fuel is ethylene or heptane, specified mass flux.
C,H,, Smagorinski

Dissipation rate

12m temperature log scalar diss rate scatterplot

Time: 8.851857
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¢$=2m pedestal

¢=1m plume
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« | Evolution of Enthalpy Defect

Scatter plots show O(0.1s) timescale between radiation source and vy
° vy extremes reach -1.6E6, approx. 1000K reduction in T, relative to adiabatic.

> Plots confirm significant soot contribution to the radiation source

° y can be positive due to radiative absorption by rich side soot.

o

Soot develops at fuel rich condition, transported through radiatively quenched flame regions.
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71 Vertical Wall Fires

Vertical flame spread presents a
challenging heat and mass transfer

modeling problem

Wall fire represents a subset of the
physics.

Measurement and Computation of Fire
Phenomena (MaCFP) database
provides a platform for open source
experimental data and model validation

° Buoyant plumes

° Pool fires

o Wall fires




| Experimental Configuration

Porous, water-cooled burner data from

MaCFP database!
Water-cooled heat transfer wall above burner
Fuel: Propylene at 17.05 g/m?/s

Measured data
> Gas Temperature
° Heat flux to the water cooled wall/burner panels

> Soot depth

'de Ris 2002, data at https://github.com/MaCFP/macfp-db
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» | Wall fire modeling

Sierra/Fuego CFD software coupled
with Nalu for participating media
radiation

o Control-volume finite-element code

(CVFEM)
> Eddy dissipation concept (EDC)

combustion

> RANS k — € turbulence

Wall-modeled porous burner injects
mass 1n to domain

Wedge layer transition to coarser
mesh

Open boundaries for
entrainment/outflow
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» 1 Discretization

3 meshes based on off-wall (y-direction)
discretization:

° Ay = 2.5,5,10 mm
o Ax = Az = 2.5Ay

Wedge layer at 30.4 cm from burner
facilitates transition to a coarser mesh

Number of nodes -
> 1,950,598 at Ay = 2.5 mm Ax \ \
- 247,915 at Ay = 5 mm 'At —
© 35,286 at Ay = 10 mm —4 \ \
o




» | Temperature Results
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Temperature Results — EDC Absorption Coefficient Length

2 Scale

Large = 0.5 m for pool fires

Small = 0.5 cm on the order of the grid
near the wall (essentially no averaging for
absorption coefficient)

Decreases peak temperature by ~40 K

Increased absorption by a approximately a
factor of 2 in the flaming region

Increases temperature outside of flaming
region (cooler gas absorbs some radiation
from the flame)
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» 1 Temperature Results — Buoyant Vorticity Generation Model

Buoyant Vorticity Generation model
aims to include buoyancy induced
turbulence

Augment turbulent kinetic energy
production with
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« | Heat Flux at the Wall
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» 1 Heat Flux Components

Heat flux components for Ay =

5 mm case
Compared to FireFoam (Ren &
2016) Fuego predicts a higher g
convective heat flux and lower =
radiative flux =t
X
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» 1 Radiance

Radiance measurements taken in similar
fuel flow rate cases

Radiance under-predicted by ~30% with
small L EDC
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» 1 Temperature profiles with EDC model
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Temperature (K)

28| Wall fire with flamelet libraries
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With flamelet models temperatures are
significantly underpredicted.

However the enthalpy losses are greater

for EDC.

We have an issue with the scalar
variance that determines span of PDF
for convolution.
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»1 In summary

An enthalpy-defect, dissipation rate-based flamelet model is developed
for sooting flames

° Transient flamelet-generation allows the flame temperatures from
adiabatic to ambient.

° Not only radiation: potentially suitable for wall-cooling/heating
application

At the CFD-scale, enthalpy and a two-equation soot model evolves with
participating media radiation transport (discrete ordinates).

The model is demonstrated on sooting C,H, and C-H,, plume flames

o Bffect of the modeled radiation and enthalpy defect matches well to
the measured temperature

° Soot magnitude is reasonable. Oxidation limited by radiant losses.

> Strong interaction between soot evolution and radiation is observed
in the turbulent flame
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Thank you

Questions: John Hewson
jchewso@sandia.gov
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