
Holes in Germanium Quantum Wells
and Their Potential Applications in
Quantum Computing
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2D electrons/holes
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2D electrons in Si
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Band alignment of Si/SiGe heterostructures
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Band alignment of Ge/SiGe heterostructures

(b)
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Undoped Ge/SiGe heterostructure field-effect transistors
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Device operation mobility

• Mobilty on the order of 2x105 cm2/Vs achievable
• Mobility increases with density

=> screening
• Shallower channels have lower mobilities

=> oxide/GeSi interface is disordered
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Device operation — 2D hole density

• The 2D hole density saturates.
0...

• Shallow channels r'.1
> High saturation densities, depth dependent.
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T = 0.3 K

E 8
> Small slopes (capacitances) Ci)

• Deep channels
> Low saturation densities, depth independent.
> Large slopes (capacitances)
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Device operation 2D hole density
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Device operation 2D hole density
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Weak localization (no spin-orbit coupling)
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Adapted from McCann Physics 2, 98
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Weak anti-localization (spin-orbit coupling)

Spin and momentum are locked together.
Back scattering is suppressed.
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Physical properties — spin-orbit coupling

• Low densities
> Weak localization only

• Intermediate densities
> Weak anti-localization on top of weak

localization only
• High densities

> Weak anti-localization only

Cubic Rashba: -(sin30,-cos39)
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Physical properties — spin-orbit coupling

• Spin-orbit length decreases with
density and can be as short as 0.1 um
(< mean free path), while the phase
coherence length can be a few
microns long (>mean free path)

• This means the hole spin can rotate
at a high yet controlled rate, maintain
its phase coherence, and suffer no
scattering.
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Physical properties — weak antilocalization beyond diffusive regime Sandia
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• Conventional theories for weak (anti)localization are only valid in the diffusive regime at low magnetic fields.

• Our data lie outside this regime.

• Numerical methods and code for HPC available with paper.
•

-.- G&G
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I I I I i I ili
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p (x1011 Ci11-2 ) Chou, Nanoscale 10, 20559 (2018)



In a perpendicular magnetic field...

B
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Cyclotron motion, Ec = heBperp/m*

Spin splitting, gap Ez = gpB



Energy spectrum in a magnetic field
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Physical properties — effective mass

• — 0.08 mo.
• — density independent.

• This mass is small compared to the
mass of electrons in Si (0.19), the mass
of holes in GaAs (0.2-0.4), and is
comparable to the mass of electrons in
GaAs (0.07).

• Smaller mass
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Physical properties effective mass

Theory

Fto. 8. Figures of constant energy in the (100) plane of k-spalt,
for the two fluted energy surfaces which arc dcfrneratc at th,-
valence band edge; constants as for germanfri,1

Dresselhaus PR 98, 368
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The quantum Hall effect

In a perpendicular magnetic field, the spectrum of a 2D gas is a series of Landau levels:

1 Ez

1 Ec  E
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Z

. / Ez

Ec  E
C 
-E
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. / Ez

1 Ec  E
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Ec is cyclotron gap: heB/(2nm*)

Ez is Zeeman gap: g*p.B

m* and g* are material parameters.

Landau level degeneracy (# electrons / area):
eB/h
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Quantum Hall ferromagnetic transition

a
(, Ez

1 Ec I Ec -Ez >Ez

• T Ez

.
# 
• i 

t Ez

I Ec 

. 
1 Ec-Ez=Ez

,
# 
• i 

1 Ez

1 Ec

•
•

•
•

1 Ez

Ec-Ez<Ez

1 Ez

p = 1.91x1011 cm-

14 9
112101

8
7

6

7

5

J

p = 1.03x1011 cm"

11

3

Bp (T)
1.7

Sandia
National
Laboratories

In most cases, Ec >> Ez

Strong even states, weak odd states

If Ec 2Ez

Strength of even states N strength of odd

states

If Ec < 2Ez

Strong odd states, weak even states

Ez/Ec increases with decreasing density.

Lu, Scientific Reports 7, 2468 (2017)



Quantum Hall ferromagnetic transition
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A spin transition (unpolarized <-> polarized)

at v=2 occurs at p-2.4x101° cm-2.

This transition marks the point where Ec—Ez

heB/(2iim*) = g*p.B

m*g* = 2

Lu, Scientific Reports 7, 2468 (2017)



Quantum Hall ferromagnetic transition Sandia
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The physical picture of the system at the transition:
micro-domains of different spin configurations. Away from the transition, one spin configuration is
preferred. Domains move and merge to minimize surface energy.

Evidence of micro-domains is found in the time dependence.

by S. Zurek, E. Magnetica, CC-BY-3.0
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Quantum Hall ferromagnetic transition

Local gating to create counter-propagating edge states with opposite spins

"Impurity-generated non-Abelions"

Simion Phys. Rev. B 97, 245107 (2018)
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Physical properties — g factor

• — 5 — 30
• — density dependent.

• The g factor is large compared to the g
factor of electrons in Si (-2) and the g
factor of electrons in GaAs (-0.44).
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Hole spin qubits in Ge/SiGe

Implications for Quantum Dots
• Low Disorder

- Help Dot-Dot Coupling

• Small Effective Mass

- Help Dot-Dot coupling

- Easier Lithography

• Anistropic g-factor

Large g-factor allows operation at smaller

magnetic fields

- Dot-to-Dot variation is possible

• Strong Spin-Orbit-Coupling

- Natural mechanism for qubit control

- Introduces additional noise channel

The effect of confinement on these

properties remains largely unexplored

6 4s
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Spin qubits in Ge/SiGe

Surface electrodes used to laterally confine hole

reservoir reservoir

I ge s sor
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Spin qubits in Ge/SiGe

• Single Hole confined to lateral

quantum dot

• Spin Qubit States: mj=+3/2

• Qubit readout and initialization

through energy selective

tunneling to reservoir

• Qubit Control through

microwaves applied to gate

• Occupancy detected through

nearby charge sensor

reservoi:'

rge sor

1. Isolation 2. Accumulation 3. Plunger
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Spin qubits in Ge/SiGe

Single Layer Devices
can be tuned to low-
hole regime in
transport
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Spin qubits in Ge/SiGe

v. Isolation 2. Accumulation 3. Plunge'

Ga implanted Ohmic contacts
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Goals:

• Independent Control of occupation and tunnel barriers
• Tighter Confinement

• Low Capacitance for EDSR

A120? + Hf02

Quantum

Dot

Hardy, unpublished.



Spin qubits in Ge/SiGe

Three Metal Layer Device

T094459, id otU
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1. Isolation 2. Accumulation 3. Plunger

Coulomb Blockade observed in
the three-metal-layer devices

Hardy, unpublished.
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Summary

■ Induced 2D holes in Ge/SiGe heterostructure field effect
transistors demonstrated.

■ Device behavior can deviate from thermal equilibrium.

■ Physical properties (mass, g factor, spin-orbit coupling
strength) characterized.

■ Gate controlled quantum Hall ferromagnetic transition
observed at low densities. Platform for topological
superconductivity?

■ Development of spin qubits in Ge/SiGe


