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Undoped Ge/SiGe heterostructure field-effect transistors

Al O, (90 nm)

Ge QW (25 nm)

HT-Ge Buffer (100 nm)
LT-Ge Buffer (200 nm)

= Si Buffer (200 nm)
p-Si(100) substrate
HH
LH
Laroche, Appl. Phys. Lett. 108, 233504 (2016)

Su, Phys. Rev. Mater. 1, 044601 (2017)
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Device operation — mobility Sanin
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« Mobilty on the order of 2x10° cm?/Vs achievable T=03K
* Mobility increases with density
=> screening
« Shallower channels have lower mobilities
=> oxide/GeSi interface is disordered

Mobility (cm®/Vs)

Hole Density (cm™)

Su, Phys. Rev. Mater. 1, 044601 (2017)




Device operation — 2D hole density Soncin
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1 =
« The 2D hole density saturates. 103 10 T=0.3K
‘ 9. x10"

« Shallow channels : « 58 nm

» High saturation densities, depth dependent. 8|

» Small slopes (capacitances)
« Deep channels 6 116 nm

» Low saturation densities, depth independent.

» Large slopes (capacitances) 1.6 1.2 0.8 '04
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Su, Phys. Rev. Mater. 1, 044601 (2017)




Device operation — 2D hole density
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The tunnel rate is limited by
triangular barrier (set by Si%) and is
depth independent.

The tunnel rate can be so low that
the density only slowly decreases
and never reaches equilibrium at low
temperatures!

The tunneling rate is high (compared to
experiment time scales).

The density probed by the Hall effect
approaches the equilibrium case.

Su, Phys. Rev. Mater. 1, 044601 (2017)



Device operation — 2D hole density Soncin
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Adapted from McCann Physics 2, 98



Wea

K anti-localization (spin-orbit coupling)

Spin and momentum are locked together.
Back scattering is suppressed.
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Physical properties — spin-orbit coupling Sonda

* Low densities
» Weak localization only -y ‘ ] —Best Fits
* Intermediate densities : _ Low Densi
» Weak anti-localization on top of weak
localization only
* High densities
» Weak anti-localization only

‘ 1] . | f | L
-30-20-10 0 10 20 30 10 5 0 5 10
Cubic Rashba: ~(sin38,-cos36) B (mT) B (mT)

Chou, Nanoscale 10, 20559 (2018)




Physical properties — spin-orbit coupling Sonda

» Spin-orbit length decreases with 1000 E’
density and can be as short as 0.1 um - -
(< mean free path), while the phase I i
coherence length can be a few 100? — 15_
microns long (>mean free path) m) » &
o 10¢ = [
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Physical properties — weak antilocalization beyond diffusive regime @

Conventional theories for weak (anti)localization are only valid in the diffusive regime at low magnetic fields.

Our data lie outside this regime.

Numerical methods and code for HPC available with paper.
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Chou, Nanoscale 10, 20559 (2018)




In a perpendicular magnetic field... Sandi
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Cyclotron motion, Ec = heB

perp

Spin splitting, gap Ez = guB
T




National _
E E Laboratories

Energy spectrum in a magnetic field Sandi
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Physical properties — effective mass

¢ ~0.08 m,.

« ~ density independent.

* This mass is small compared to the a
mass of electrons in Si (0.19), the mass 1
of holes in GaAs (0.2-0.4), and is
comparable to the mass of electrons in |
GaAs (0.07).

50

« Smaller mass &

=> more extended wave functions ;350-
=> easier gate controls for .
nanostructures -50
=> |arger orbital gaps 100
=> can use higher T cryostats
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Hardy et al., Nanotechnology, 30, 215202 (2019)



Physical properties — effective mass
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In a perpendicular magnetic field, the spectrum of a 2D gas is a series of Landau levels:

Ec is cyclotron gap: heB/(2rm¥*)

¥ < tEZ

Ez is Zeeman gap: g*uB

Ec ] EC-EZ>EZ
4 ,' t E m* and g* are material parameters.
ry . Z

Ec 1 Ec-Ez>Ez
v -’

- 1"
Ec 1 Ec'Ez>Ez

.15

Landau level degeneracy (# electrons / area):
eB/h

Lu, Scientific Reports 7, 2468 (2017)
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Quantum Hall ferromagnetic transition
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In most cases, Ec >> Ez
—> Strong even states, weak odd states

If Ec ~ 2Ez
= Strength of even states ~ strength of odd
states

If Ec < 2Ez
—> Strong odd states, weak even states

Ez/Ec increases with decreasing density.

Lu, Scientific Reports 7, 2468 (2017)




Quantum Hall ferromagnetic transition Sanin
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Quantum Hall ferromagnetic transition Sanin
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The physical picture of the system at the transition:
micro-domains of different spin configurations. Away from the transition, one spin configuration is
preferred. Domains move and merge to minimize surface energy.

Evidence of micro-domains is found in the time dependence.

8 4
——3 mT/sec
— 1.5 mT/sec
— 1 mT/sec 6}‘“
a | —0.75 mT/sec =
X | — 0.6 mT/sec x o
=% 3 o
o o O (0]
<
O
v=2
by S. Zurek, E. Magnetica, CC-BY-3.0 00 0.6 2 0 1 2 3 a
I3p (T) Sweep Rate (mT/sec)

Lu, Scientific Reports 7, 2468 (2017)
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Local gating to create counter-propagating edge states with opposite spins

“Impurity-generated non-Abelions”
Simion Phys. Rev. B 97, 245107 (2018)




Physical properties — g factor Sonda,

« ~5-30
« ~ density dependent.

» The g factor is large compared to the g
factor of electrons in Si (~2) and the g 30t
factor of electrons in GaAs (~0.44). .
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Hole spin qubits in Ge/SiGe Sandi
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Implications for Quantum Dots

* Low Disorder
- Help Dot-Dot Coupling
* Small Effective Mass
- Help Dot-Dot coupling
- Easier Lithography
* Anistropic g-factor
- Large g-factor allows operation at smaller
magnetic fields
- Dot-to-Dot variation is possible
e Strong Spin-Orbit-Coupling
- Natural mechanism for qubit control
- Introduces additional noise channel

The effect of confinement on these
properties remains largely unexplored




Spin qubits in Ge/SiGe Sond,

Surface electrodes used to laterally confine hole

1. Isolation 2. Accumulation 3. Plunger

Hardy, unpublished.



Spin qubits in Ge/SiGe Sandi
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= Single Hole confined to lateral
quantum dot
= Spin Qubit States: m;=+3/2

= Qubit readout and initialization
through energy selective
tunneling to reservoir

= Qubit Control through
microwaves applied to gate

1. Isolation 2. Accumulation 3. Plunger

= QOccupancy detected through
nearby charge sensor

Hardy, unpublished.




Spin qubits in Ge/SiGe Sandi
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Spin qubits in Ge/SiGe Sandi

National _
Laboratories

Goals:

* Independent Control of occupation and tunnel barriers
* Tighter Confinement

* Low Capacitance for EDSR

S
T um

1. Isolation

2. Accumulation 3. Plunger

Quantum
Al,O, + HfO, Dot

Ga implanted Ohmic contacts

Hardy, unpublished.




Spin qubits in Ge/SiGe

Three Metal Layer Device
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1. Isolation 2. Accumulation 3. Plunger

Coulomb Blockade observed in
the three-metal-layer devices

Hardy, unpublished.
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Summary

= |nduced 2D holes in Ge/SiGe heterostructure field effect
transistors demonstrated.

= Device behavior can deviate from thermal equilibrium.

= Physical properties (mass, g factor, spin-orbit coupling
strength) characterized.
= Gate controlled quantum Hall ferromagnetic transition

observed at low densities. Platform for topological
superconductivity?

= Development of spin qubits in Ge/SiGe




