This paper describes objective technical results and analysis. Any subjective views or opinions that might be expressed
in the paper do not necessarily represent the views of the U.S. Department of Energy or the United States Government.

Exceptiona

Programming Model Tradeoffs for Global vs Local Recovery:
Algorithm Based Fault Tolerance

Hemanth Kolla, Keita Teranishi, Jackson Mayo, Maher Salloum, Rob Armstrong
Sandia National Laboratories, California, USA

2y

G U.S. DEPARTMENT OF -
ENERGY //24A '#?,Qg-:é Sandia National Laboratories is a multi-program laboratory managed and operated by National Technology and Engineering Solutions of Sandia, LLC.,a wholly owned

ont Muclonr Sosurlty Admintstr subsidiary of Honeywell International, Inc., for the U.S. Department of Energy’s National Nuclear Security Administration under contract DE-NA-0003525

Outline: Talk of Two Halves

1. Programming models for scalable resilience.

2. Algorithm Based Fault Tolerance: Global vs Local recovery.

Outline i) ot

1. Programming models for scalable resilience.

Motivations and Background) .

= Reliability has become a major concern of large scale
computing systems
= Complexity of hardware and software (humber of components)

= Qverhead for reliability enhancement (20% penalty in power and
performance)

= Performance variability across cores, accelerators and nodes
= System level approach is expensive and C/R cannot resolve
all resilience issues.

= Need better programming model support
= Extension of Fault Tolerant MPI Proposal (Fenix)

= On-node parallel computing
= Asynchronous Many Task (AMT)
= Resilience Extension of Kokkos

= Distributed (AMT)

Fenix: Extending MPI-ULFM) .

= MPI-ULFM has been proposed for the fault tolerance APIs of
the MPI standard (hard errors and failures)

= Survived processes continues after MPI rank failures
= New MPI functions for fixing MPlI communicator
= MPI_Comm_agree ---Sanity check (resilient collective)

= MPI_Comm_revoke --- Invalidate MPI Communicator
= MPI_Comm_shrink --- Fix MPI Communicator removing dead process

= User is responsible for the recovery after MPI_Comm_shrink

Fenix:) i

: N
= Fault Tolerant Programming Framework for MPI s ez
Applications s:;c:;lm;ti;n of Fenix MPI Fault Tolerance
= Separation between process and data recovery S

Sarca Natonl Latorsiries
Abuaueraue, New Mexco 87185 and Liermre, Calfria 4550

= Allows third party software for data recovery
= Multiple Execution Models

= Process recovery
= Extend MPI-ULFM |
= Process recovery through hot spare process pool |

= Process failure is checked at PMPI layer and recovery 8 st e
happens automatically under the cover
" |In-memory data redundancy Application
= Multi-versioning (similar to GVR by U Chicago & ANL)

MPI-ULFM

Asproved o puic rleas; frher diseminaton e

Fenix — Process Recovery Interface @J&:.

If newcomm is NULL, Fenix tacitly
replaces comm everywhere with resilient

void Fenix_Init (MPI_Comm comm, communicator
MPI_Comm *newcomm,
- —> FENIX_ROLE_INITIAL_RANK
int *pPote FENIX_ROLE_RECOVERED_RANK
. t * . t ok ok —> FENIX_ROLE_SURVIVOR_RANK
o int *argc, in argv
App should use resilient ~ 8¢, gV,
communicator int num_spare_ranks, aME Somi
(newcomm) instead of int spawn,$_ e
comm 1:SPAWN
MPI_Info,

int *error);

Process failure triggers process recovery and long-jump to Fenix_init

void Fenix_Finalize ();

Sandia
ﬂ‘ National
Laboratories

Non-Shrinking Model (with spare processes)

Compute Processes
Spare processes
(allocated at job launch)

= Fenix automatically @ ° @
corrects rank-ordering .
< A
= Spare ranks are ordered | Failure ‘ Lost |
to fill the lost ranks) \ +» W =

Non-Shrinking Model (Spawn)) ..

Compute processes

Fenix automatically correct rank- Q
ordering _

Spare ranks are order to fill the lost MR L spavn
ranks Failure Q [ost) e e
Depends on the support of

MPI_Comm_spawn

Recovery

Shrink Model) i,

Compute processes

= Rank ordering after the
failure is determined by
MPI-ULFM.

= Fenix returns the program
to the beginning.

= User is responsible for
reconstruct the state

Failure

Recovery

Sandia
H National
FENIX can recover from frequent failures Y e
- 3901s 1617s 1612s «—— Recovery+rollback overhead —— 4439s 1928s 6025s
'..g []]] i I’_\] I’_‘] []] (]]] [[]] I’_\]]]
g ;==] |] | (]]]]] [}]]] (]]]]]]]
T E
o
n' T
0 10000 20000 30000 40000 50000 60000 70000 80000 86400
f ARRNRY R T R A R N A RN R RN R RN RN R RN AT R AR AR R AR Y
Checkponnts
e TN
E IIIIIHHIIIIII/ A e e T T R AR
‘qwi 94 Proc. recoveryg
§ HHIHH Data recovery T T P R O P T T
E 47 I—— Failures —~
g | 2 ——hwes 7 < bbb -
0 100 200 300 400 500 600
Execution wall time (s)
« Online recovery allows the usage of in-memory MITBF =Averaps feilkirs injectiomeafion i2)
8 w 47 94 189 No failure
checkpointing, O(1s). = oED .
 Efficient recovery from high frequency node & 200 orocess recoverﬁgm:rk .
failures, as exascale compels. f, process recoverr)‘l (sl?rink;
. u - int
« With failures injected every 189, 94 and 47 = 150 1 PR pron i
. . . ©
seconds, the total job run-time penalty is as low & 100 ‘ -
as 10%, 15% and 31%, respectively. 5 5 T
« This can dramatically improve by optimizing % O : VR e Bo e e N e
ULFM shrink. 3 2 3 4 3 4 5 4 5 6 2 3 4

Application iterations between consecutive checkpoints
———— .= E—

Node Level Parallel Programming Mode|@ ..

= Abstraction of computation and data objects allows automatic
resilience support

= Runtime scheduler orchestrates computations encapsulated by Task and
parallel_for

= Data abstractions to describe dependencies, data layout and access
patterns (Read/Write/RW)

= Simple extension to the existing APl provides knobs to the users to
selectively apply resilience

Resilient AMT Prototype

= Resilience Extension of
Habanero C++
= AMT programming
Interface by Vivek Sarkar
= Simple extension allows
the user to introduce 3
major resilient program
execution patterns
= Task Replication Interface
= Task Replay Interface
= ABFT Interface

Original Task Launch

hclib::async_await (lambda,
hclib future t *f1, ..,
hclib future t *f4);

Task Launch with Replication

diamond::async_await_check<N> (
lambda, hclib::promise<int>
out, hclib future t *f1, ..,
hclib future t *f4);

Task Launch with Replay

replay::async_await check<N>(
lambda, hclib::promise<int>
out, std::function<int(void*)>
error_check fn, void * params,
hclib future t *f1, .. ,

hclib future t *£f4);

Sandia
National
Laboratories

Performance) B

=]
(=2

{4

w
=

| 2 2
w o/ olo |+
i
rEw
it
sy
(=]
o

3

ﬂ!@
L2 4
PN
i
o
2
L 4

NE~EN
i

i
r€Ew o o réEw
i

L2 4
e
wev RreEw

olo|o|o]|o]|o|oe]|o]|e
i€

- 0O > O 4 4 O O

©
NELr wEEE

>
o

= On 2 Haswell CPU node (16x2 cores)
= 1D and 3D stencil code
= Conjugate Gradient with crank_1 sparse matrix
= Smith-Waterman (SW) algorithms

= Task-parallel Fault-Tolerant Cholesky Factorization
= Based on the Cao and Bosilca (IPDPS2016)
= The application data is over-decomposed.

= 4 way for stencil and CG
= 64x64 for SW and Cholesky

Replay and replication do not double @ .
the memory overhead

Synthetic | Stencil 1D

vanilla vanilla | Replay | Replication ‘ Mix Replay | Mix Replication
1 worker 0.19GB | 0.67GB | 1.02GB | 0.98GB | 1.08 GB 1.05 GB

32 workers | 6.19GB | 6.67GB | 7.02GB | 6.99GB || 7.08 GB 7.05 GB

= Synthetic benchmark just launch empty tasks iteratively

= Resilient 1D stencil code execute 128 tiles (16K points per tile)
per iteration (4 tasks per worker)

= Executed 1M iterations

= Tested on NERSC’s Cori (2 Haswell CPUs, 32 cores total, 2.3GHZ)
system

14

Performance without faults) 5.

® Baseline ® Replay Replication ® ABFT
100

75

Execution Time (Seconds)

IIII mET.

Stencﬂ Stencﬂ Cholesky

= Replication is expensive for 1D stencil, CG and SW.
= QObserved some cache hits with 3D stencil

= High cache hits and critical path in task-base Cholesky
suffers less replication overhead

Application delay is proportional to) i
the # of failures

®m 1% W 10%
40

30

20

N

o

[4+]

—

[—

[+F]

8

QL

a

[«}]

w

o

& 10

=

@D

E 0

o

=

o

=]

o P .
< ‘ o
(i Q Q <

ol

Scalability of 3D stencil code)
(MPI+Reslinet HCLIB)

B Baseline B Replay = Replication

> 100

o

8 < —

o 75 |

3]

9,

D) ‘ Lol

E 50 o

'—

S 25 |

=]

(3]

S 0 |
L 2 4 8 16 32

Number of Nodes

= MPI-HCLIB implementation (1D, weak scaling, over-decomposed)
= MPI (2-sided) calls are running on special worker (thread-funnel).
= Preliminary results indicate replication overhead are masked by MPI overhead

Ongoing Work: Resilient Kokkos — @

Data

MPI

Staging IO/HDF5

System

» Kokkos provides abstraction of data and (on-node) parallel program
execution

» Kokkos::View provides an array with a variety of tunable parameters through template

* Execution Space and Memory Space to provide performance portability over multiple
node architecture

e Exploit C++ Lambda to support parallel program execution

» Kokkos’ abstraction to enable resilient parallel computation!

* Resilient Execution Space for redundant program execution
* Resilient Memory Space for checkpointing and data redundancy

Parallel Programing with Kokkos) E.

- for (size t i = 0; i < N; ++i)
£ {
n /* loop body */
}
o #pragma omp parallel for
% for (size t i = 0; i < N; ++i)
@ {
8‘ /* loop body */
}
n parallel for ((N, [=], (const size t 1)
R {
S /* loop body */
N })i

= Provide parallel loop operations using C++ language features

= Conceptually, the usage is no more difficult than OpenMP. The
annotations just go in different places.

Kokkos information courtesy of Carter Edwards

Resilient Kokkos enables resilient data o,
parallel computation with ease

Kokkos: : View (double *, ..., ResilientSpace 5 A(1000; parallel_for (RangePolicy,(0, 100), KOKKOS_LAMBDA

parallel_for (RangePolicy.s(0, 100 5, KOKKOS_LAMBDA (constintl)
constintiy

{
: —
A Replication A=

o)

Kokkos::View< ... e e
e i Lambda captures all Kokkos::View instances

for (int iter = 0; iter < 100; ++iter)
{
// Will generate "compute_stuff/<view>.<iter>.bin" for all captured views
Kokkos: :checkpoint("compute_stuff", iter, true, KOKKOS_LAMBDA {
Kokkos: :parallel_for(N, KOKKOS_LAMBDA(int i) { .
// Some computation with a and b

b

Kokkos::parallel_for(N, KOKKOS_LAMBDA(int i) {
// Some other computation with a and c
T
b E

Automatic Checkpointing

Performance of MiniMD) 5.

Checkpoint Overhead (checkpoint every 10 steps) Application and Checkpoint Scaling (28 cores per rank)

35% 700 — overr?ead
—— function
" —— checkpoint
30% - i ¢
600 — write
step
25
% . 500
2 head u
T 20% i L 400
% —— function §
L - ~— checkpoint [
2 15% - — wiite T 300 -
=
v o
= [
O 10% 56
. 100
o 0
’ v T 2 4 6 8 0 12 14 16
Number of Ranks
Number of Ranks

= Molecular Dynamics App: 32M atoms in 200x200x200 cells
= Strong scalability on 2CPUs/Node Haswell Cluster with FDR IB

= Checkpoint every 10 time steps
= Resilient Memory Space interfaced to VeloC (using the file-based checkpointing)

= Negligible overhead for Kokkos runtime

Sandia

Outline i) onar

il

2. Algorithm Based Fault Tolerance: Global vs Local recovery.

Algorithm Based Fault Tolerance (ABFT)) &5

= Handling hard failures is not enough for resilience.
= An error does not always cause a crash, but leads to a “wrong” answer.

= Physics of the problem could be leveraged to detect an error, before wide spread failure.

= Application-level detection can be a powerful complement to resilient programming models

Levels: Example uncertainties:
We are here

£k How solver apps will be (re)written (programming
Applicatio .
models); prevalence of unreproducible bugs
c
System 7'y -% = Ability of bugs here to corrupt the app state
software T a0 .9
S &
£ 2E Rates of (initially) undetected errors; costs of mitigating
Hardware oo : : o
=< in hardware (higher voltage, redundancy, shielding)

Generalizing ABFT: Physics Based Checksums (@&,

= Leverage existing work on ABFT for linear algebra, but incorporate physics.
= Key idea: Focus only on detection of silent errors, treat them same as hard failures.
= Enabling assumptions:

= Failures are locally rare (component MTBFs are long, if not system MTBFs).

Checkpoint/restart in some form will be used/available.

Keep resilience overhead small.

Applications are solving physics equations that satisfy conservation laws.

Silent hardware errors and software anomalies will typically violate conservation.

Checksums for Efficient Redundancy) 5,

= Introduce a smaller side computation that remains consistent with solver state if no errors.

= Verify consistency intermittently, just before each checkpoint

Solver variables Checksums
Init)
| Checkpoint
Operation 1 Update
| \ 4
Operation 2 Update
| \ 4
Operation 3 Update
\ 4
| Checkpoint
Verify

& re-init

Checksums for Efficient Redundancy i

Sandia
National
Laboratories

= Introduce a smaller side computation that remains consistent with solver state if no errors.

= Verify consistency intermittently, just before each checkpoint

Solver variables Checksums
Init
| Checkpoint
Operation 1 Update
\ 4
| X
Operation 2 Update
| \ /4
Operation 3 Update
Vv
I Checkpoint
Verify

& re-init

Checksums from Conservation Laws i) S

: 0
= General local conservation law (density p, flux J): a—': =-V.J
= Conserved quantity in a region R (e.g., a computational subdomain): Q(R) = / dV p
R

" Integrated conservation law: M - —7{ dS-J
dt R

= Q(R) changes only by flux through boundary, which is much faster to compute than Q(R)
itself:

= When discretized form of this conservation law holds, Q(R), is a local physics-based checksum
that can be updated efficiently and verified intermittently.

= No global communication beyond what solver already performs; flux in each subdomain can be
computed from data already being communicated between processes.

Sandia

Application: 1D Linear Advection Equation) ..

0 0
= 1D linear advection equation —¢ + u—(b =0
ot Ox

= Consider the Lax-Wendroff stencil (with ¢ = v At/Ax):

o7t = Je(c+1)df_y + (1=)¢f + 3¢(c —)¢y

= The discretized conserved quantity on each local subdomainis Q(¢) = >, @i

= The conserved quantity, checksum, can be updated independently of local state:

Q@) =@ + L gm g+ LD g

= Checksum update requires only neighbouring (ghost) points.

Local vs Global Recovery) &

= The physics based checksum allow an efficient, purely local error detection mechanism.
= Upon detection, suitable resilience mechanisms can be deployed.

= Checkpoint/Rollback is most common; but global rollback recovery is a disproportionate
response for a purely local detection mechanism.

III

= We examined “local” and “global” recovery using Fenix:

An MPI-based fault tolerance library for distributed resilience.
= Primary design is for hard failure (process loss); built on top of MPI-ULFM.
= Provides APIs for data “store”/ “restore” operations to recover from process loss.

= Extended to provide purely local recovery (no MPI process loss, no communication for
store/restore).

Results: Weak scaling study) &,

= Weak scaling study of baseline, local _recovery and global recovery versions of 1D stencil.

= Emulated silent error rate of 0.01, 1000 grid points per rank, 1000 iterations, runs on Cori.

Weak scaling stud
0.008 g y

—8— baseline
0.007 4 ~* local_recovery

= Local checkpoint/restart adds marginal
overhead.

0.006 A

= Does not disrupt weak scalability of the
baseline code.

o o o
o o o
o o o
w - w

execution time (s)

= Problem size is cache friendly.

0.002 -

0.001 A

0.000 T T T T T T T
50 100 150 200 250 300 350 400

MPI ranks

Results: Weak scaling study) &,

Weak scaling study of baseline, local_recovery and global recovery versions of 1D stencil.

Emulated silent error rate of 0.01, 1000 grid points per rank, 1000 iterations, runs on Cori.

Weak scaling study

—e— baseline

0.7 1 —@— local_recovery
—8— global_recovery
0.6 -
0.5 A

0.4

0.3

execution time (s)

0.2

0.1

0.0 A

150 200 250 300 350
MPI ranks

Global recovery involves an global
agreement (anyone fails, everyone rolls
back).

Not scalable, recovery cost scales with
number of ranks.

Cascading cost of recovery (some ranks
stuck in an endless loop of restarts).

