
Exceptional service in the national interest Sandia
National
Laboratories

Programming Model Tradeoffs for Global vs Local Recovery:
Algorithm Based Fault Tolerance

Hemanth Kolla, Keita Teranishi, Jackson Mayo, Maher Salloum, Rob Armstrong

Sandia National Laboratories, California, USA

c
3), U.S. DEPARTMENT OF

sd ENERGY ir.„„4.471-4.

Sandia National Laboratories is a multi-program laboratory managed and operated by National Technology and Engineering Solutions of Sandia, LLC.,a wholly owned
subsidiary of Honeywell International, Inc., for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-NA-0003525

PASC, June 12th-14th, 2019, Zurich

SAND2019-6329C

This paper describes objective technical results and analysis. Any subjective views or opinions that might be expressed
in the paper do not necessarily represent the views of the U.S. Department of Energy or the United States Government.

Outline: Talk of Two Halves

1. Programming models for scalable resilience.

2. Algorithm Based Fault Tolerance: Global vs Local recovery.

Sandia
National
Laboratories

Hemanth Kolla. PASC. 12 June 2019 1

Outline

1. Programming models for scalable resilience.

2. Algorithm Based Fault Tolerance: Global vs Local recovery.

Sandia
National
Laboratories

Hemanth Kolla. PASC. 12 June 2019 2

Motivations and Background

■ Reliability has become a major concern of large scale
computing systems

■ Complexity of hardware and software (number of components)
■ Overhead for reliability enhancement (20% penalty in power and

performance)
■ Performance variability across cores, accelerators and nodes

■ System level approach is expensive and C/R cannot resolve
all resilience issues.

■ Need better programming model support
■ Extension of Fault Tolerant MPI Proposal (Fenix)

■ On-node parallel computing
Asynchronous Many Task (AMT)

Resilience Extension of Kokkos

■ Distributed (AMT)

Sandia
National
Laboratories

Fenix: Extending MPI-ULFM
Sandia
National
Laboratories

■ MPI-ULFM has been proposed for the fault tolerance APIs of

the MPI standard (hard errors and failures)

■ Survived processes continues after MPI rank failures

■ New MPI functions for fixing MPI communicator

■ MPI_Comm_agree --- Sanity check (resilient collective)

■ MPI_Comm_revoke --- Invalidate MPI Communicator

■ MPI_Comm_shrink --- Fix MPI Communicator removing dead process

■ User is responsible for the recovery after MPI_Comm_shrink

Hemanth Kolla, PASC, 12 June 2019 4

Fenix:
■ Fault Tolerant Programming Framework for MPI

Applications
■ Separation between process and data recovery

Allows third party software for data recovery
Multiple Execution Models

■ Process recovery

Extend MPI-ULFM
Process recovery through hot spare process pool
Process failure is checked at PMPI layer and recovery
happens automatically under the cover

■ Data recovery

In-memory data redundancy
Multi-versioning (similar to GVR by U Chicago & ANL)

Sandia
National
Laboratories

SANDIA REPORT

Specification of Fenix MPI Fault Tolerance
library
version 1.0

Min Gam. flek F Van def W.aart, 'Wen. and Menall Naas.

C) Sandia National Laboratories

Application

renix

MPI-ULFM
Hemanth Kolla, PASC, 12 June 2019 5

Fenix Process Recovery Interface
If newcomm is NULL, Fenix tacitly
replaces comm everywhere with resilient

void Fenix Init (MPI Comm comm, communicator

/
App should use resilient
communicator
(newcomm) instead of
comm

MPI_Comm *newcomm,

int *T-Ole,

int *argc, int ***argv,

int num_spare_ranks,

 FENIX_ROLE_INITIAL_RANK

> FENIX_ROLE_RECOVERED_RANK

> FENIX_ROLE_SURVIVOR_RANK

int spawn,‹

MPI Info,

int *error);

0:NO SPAWN

1:SPAWN

Process failure triggers process recovery and long-jump to Fenixinit

void Fenix Finalize ();

Sandia
National
Laboratories

Non-Shrinking Model (with spare processes)

Compute Processes

'mem
loodoele•••

• Fenix automatically
corrects rank-ordering

• Spare ranks are ordered
to fill the lost ranks

Failure

Recovery

Spare processes
(allocated at job launch)

""
•

gml (Lost

_,W • I

►

Sandia
National
Laboratories

Non-Shrinking Model (Spawn)
Compute processes

re--̀fr-_--1--fer--_--2-.
0000 *0 • •
40.1* 01* • • •

• Fenix automatically correct rank-
ordering

• Spare ranks are order to fill the lost
ranks

• Depends on the support of
MPl Comm_spawn

Failure

Recovery

Sandia
National
Laboratories

MPI_Comm_spawn

Spare

Shrink Model
Compute processes

1

_ip
rAt%see%•
1••••lo

• Rank ordering after the
failure is determined by
MPI-ULFM.

• Fenix returns the program
to the beginning.
• User is responsible for

reconstruct the state

4111k

Failure

Recovery New

P2)

Sandia
National
Laboratories

FENIX can recover from frequent failures
Sandia
National
Laboratories

c
o

2

c
2

3901s 1617s 1612s Recovery+rollback — 4439s 1928s 6025s— overhead

10000 20000 30000 40000 50000 60000 70000 80000 86400

13-
LL 1111111 1:MA11111111111111111111111111111 1111111111111,11111111111111,i11111 11111111Lost Checkpoints Lost 11111
co
2

187

111111

ckpt

i
/

ckpt
111

111 1111111111111111111 111111111111111111111 11111111111111111111 1111111111111111
94 Proc. recovery I

111111111i Data recovery 1111111111111111 1111111111R 111116d111111 111111111111111111 1111111111111111 11111111111111 1111111111111111All 111,1111111111
47

Failures ---

0 100 200 300
Execution wall time (s)

• Online recovery allows the usage of in-memory
checkpointing, 0(1s).

• Efficient recovery from high frequency node
failures, as exascale compels.

• With failures injected every 189, 94 and 47
seconds, the total job run-time penalty is as low
as 10%, 15% and 31%, respectively.

• This can dramatically improve by optimizing
ULFM shrink. Ov

er
he

ad
 o
f
Fa

ul
t
To

le
ra

nc
e
(s

)

250

200

150

100

50

0

400 500

MTBF - Average failure injection period (s)

47 94 189 No failure

SIPS
—

2 3 4 3 4 5

rollback •
process recovery (other)
process recovery (shrink)

checkpoint
data recovery •

III
- __ _

4 5 6 2 3 4

Application iterations between consecutive checkpoints

600

Node Level Parallel Programming Model
NM ' , NM NM NM

Pendi VIRTO

ONO

Done

Sandia
National
Laboratories

• Abstraction of computation and data objects allows automatic
resilience support
• Runtime scheduler orchestrates computations encapsulated by Task and

parallel_for
• Data abstractions to describe dependencies, data layout and access

patterns (Read/Write/RW)

• Simple extension to the existing API provides knobs to the users to
selectively apply resilience

Hemanth Kolla, PASC, 12 June 2019 11

Resilient AMT Prototype

Original Task Launch

• Resilience Extension of hclib::async_await (lambda,

Habanero C+-F
• AMT programming

hclib future t *fl,

hclib future t *f4);

..,

Interface by Vivek Sarkar

• Simple extension allows
the user to introduce 3
major resilient program
execution patterns
• Task Replication Interface

• Task Replay Interface

• ABFT Interface

Task Launch with Replication

diamond::async_await_check<N> (

lambda, hclib::promise<int>

, hclib future t *fl, ..,

hclib future t *f4);

Task Launch with Replay

replay::async_await_check<N>(

lambda, hclib::promise<int>

out, std::function<int(void*)>

error _ check _fn, void * params,

hclib future t *fl, ..

hclib future t *f4);
r

Sandia
National
Laboratories

12

Performance

G

G

T

T

G

A

T

T G T T A C G G

O 0 0 0 0 0 0 0 0

O 0 341 0 0 0 3 3
212I

O 0 341 0 0 0 3 6

O 341
31
6444240 1 4

O 341 4 9474543 2

O 1 644 7 644 846
—4'11-4'11 yy
O 0 4 3 5 104846 5

O 0 2 1 3 8 149

O 341 5 4 6 11 1048
—411-4114e41-401*11-
O 1 0 3 2 7 9 8 7

• On 2 Haswell CPU node (16x2 cores)
• 1D and 3D stencil code
• Conjugate Gradient with crank_1 sparse matrix

• Smith-Waterman (SW) algorithms

• Task-parallel Fault-Tolerant Cholesky Factorization
• Based on the Cao and Bosilca (IPDPS2016)

• The application data is over-decomposed.
• 4 way for stencil and CG

• 64x64 for SW and Cholesky

Sandia
National
Laboratories

13

Replay and replication do not double
the memory overhead

Synthetic Stencil 1D
vanilla vanilla Replay Replication Mix Replay Mix Replication

1 worker 0.19 GB 0.67 GB 1.02 GB 0.98 GB 1.08 GB 1.05 GB
32 workers 6.19 GB 6.67 GB 7.02 GB 6.99 GB 1 7.08 GB 7.05 GB

• Synthetic benchmark just launch empty tasks iteratively

• Resilient 1D stencil code execute 128 tiles (16K points per tile)
per iteration (4 tasks per worker)

• Executed 1M iterations

• Tested on NERSC's Cori (2 Haswell CPUs, 32 cores total, 2.3GHZ)
system

Sandia
National
Laboratories

14

Performance without faults

Ex
ec
ut
io
n
T
i
m
e
 (
Se
co
nd
s)

■ Baseline ■ Replay Replication ■ ABFT

100

75

50

25

0
Stencil Stencil CC SW Cholesky

1D 3D

■ Replication is expensive for 1D stencil, CG and SW.

■ Observed some cache hits with 3D stencil

■ High cache hits and critical path in task-base Cholesky

suffers less replication overhead

Sandia
National
Laboratories

15

Application delay is proportional to
the # of failures

Ex
ec

ut
io

n
Ti
me
 I
nc

re
as

e (
Pe

rc
en

ta
ge

) 4,

30

20

10

0

-10

1

I _I _I I.1 _1
ec .\.2A-.) .0,6\

Nv) i(ec •D :\G2, kvez. c,2p oz• vzo \-e0 <‘

NC)
5.c, e9 - kte0‘ 54J ee.?*cA GykceC

eo‘c,e10°00.,4°

cP s44 cx°

Sandia
National
Laboratories

Scalability of 3D stencil code

(MPI+Reslinet HCLIB)

Ex
ec
ut
io
n
Ti

me
 (
se

co
nd

s)

100

75

50

25

0

■ Baseline ■ Replay Replication

2 4 8 .3-

Number of Nodes

• MPI-HCLIB implementation (1D, weak scaling, over-decomposed)
• MPI (2-sided) calls are running on special worker (thread-funnel).

• Preliminary results indicate replication overhead are masked by MPI overhead

Sandia
National
Laboratories

17

Ongoing Work: Resilient Kokkos

--•••=.11,10

.1fflIv!

Kokkos::View< Data Type Execution Space, Memory Space, >

GPU
Device
Memory

Data
Staging
System

MPI
/HDF

Sandia
National
Laboratories

• Kokkos provides abstraction of data and (on-node) parallel program
execution
• Kokkos::View provides an array with a variety of tunable parameters through template
• Execution Space and Memory Space to provide performance portability over multiple

node architecture
• Exploit C++ Lambda to support parallel program execution

• Kokkos' abstraction to enable resilient parallel computation!
• Resilient Execution Space for redundant program execution
• Resilient Memory Space for checkpointing and data redundancy

18

Parallel Programing with Kokkos
To
ci)

2

8-

0

o

for (size t i = 0; i < N; ++i)

{
/* loop body */

}

#pragma omp parallel for

for (size_t i = 0; i < N; ++i)

{

/* loop body */

}

parallel for ((N, [=], (const size t i)

{
/* loop body */

});

• Provide parallel loop operations using C++ language features
• Conceptually, the usage is no more difficult than OpenMP. The

annotations just go in different places.

Sandia
National
Laboratories

Kokkos information courtes of Carter Edwards 19

Resilient Kokkos enables resilient data
parallel computation with ease

Kokkos: : View <double *, ResilientSpace >A(1000);

parallel_for (RangePolicy0(0, 100), KOKKOS_LAMBDA (

const int i)

A(i)- . ;

Kokkos::View< > a("a", ...);
Kokkos::View< > b("b",);
Kokkos::View< > c("c",);

for (int iter = 0; iter < 100; ++iter)
{

Replication

parallel_for(RangePolicy0(0, 100), KOKKOS_LAMBDA
const int i)

{
A0)=...;

1);

Sandia
National
Laboratories

Lambda captures all Kokkos::View instances

// Will generate "compute_stuff/<view>.<iter>.bin" for all captured views
Kokkos::checkpoint("compute_stuff", iter, true, KOKKOS_LAMBDA

Kokkos::parallel_for(N, KOKKOS_LAMBDA(int i) {
// Some computation with a and b

}) ;

Kokkos::parallel_for(N, KOKKOS_LAMBDA(int i) {
// Some other computation with a and c

});
});

Automatic Checkpointing
Checkpoint

"loop 1 A B_C"

20

Performance of MiniMD
Checkpoint Overhead (checkpoint every 10 steps)

35% -

30% -

5% -

0% -

— overhead

— function

checkpoint

— write

6 8 10 12 14

Number of Ranks

Application and Checkpoint Scaling (28 cores per rank)

700 -

600 -

500
-7/7

400

To 300 -
o

200 -

100

overhead

function

checkpoint

— write

step

6 8 10 12 14

Number of Ranks

Sandia
National
Laboratories

• Molecular Dynamics App: 32M atoms in 200x200x200 cells

• Strong scalability on 2CPUs/Node Haswell Cluster with FDR IB

• Checkpoint every 10 time steps

• Resilient Memory Space interfaced to VeloC (using the file-based checkpointing)

• Negligible overhead for Kokkos runtime

Hemanth Kolla, PASC, 12 June 2019 21

Outline

1.

2. Algorithm Based Fault Tolerance: Global vs Local recovery.

Sandia
National
Laboratories

Hemanth Kolla, PASC, 12 June 2019 22

Algorithm Based Fault Tolerance (ABFT)

• Handling hard failures is not enough for resilience.

Sandia
National
Laboratories

• An error does not always cause a crash, but leads to a "wrong" answer.

• Physics of the problem could be leveraged to detect an error, before wide spread failure.

• Application-level detection can be a powerful complement to resilient programming models

Levels:
We are here

System

 tsoftwa re

Hardware

Example uncertainties:

How solver apps will be (re)written (programming
models); prevalence of unreproducible bugs

Ability of bugs here to corrupt the app state

Rates of (initially) undetected errors; costs of mitigating
in hardware (higher voltage, redundancy, shielding)

Hemanth Kolla, PASC, 12 June 2019 23

Generalizing ABFT: Physics Based Checksums

■ Leverage existing work on ABFT for linear algebra, but incorporate physics.

■ Key idea: Focus only on detection of silent errors, treat them same as hard failures.

■ Enabling assumptions:

■ Failures are locally rare (component MTBFs are long, if not system MTBFs).

■ Checkpoint/restart in some form will be used/available.

■ Keep resilience overhead small.

■ Applications are solving physics equations that satisfy conservation laws.

■ Silent hardware errors and software anomalies will typically violate conservation.

Sandia
National
Laboratories

Hemanth Kolla, PASC, 12 June 2019 24

Checksums for Efficient Redundancy
Sandia
National
Laboratories

• Introduce a smaller side computation that remains consistent with solver state if no errors.

• Verify consistency intermittently, just before each checkpoint

Solver variables hecksums

Operation 11

1 Operation 2

Operation 3

•
•
.

lnit
> ahm.Checkpoint

Verify
&

Update

Update

Update

Checkpoint

Hemanth Kolla, PASC, 12 June 2019 25

Checksums for Efficient Redundancy
Sandia
National
Laboratories

• Introduce a smaller side computation that remains consistent with solver state if no errors.

• Verify consistency intermittently, just before each checkpoint

Solver variables Thecksums

Operation 11

1 Operation 2

Operation 3

lnit
>1116.Checkpoint

t‘I/Update

•
•
.

Verify
&

1/Update
Update

Checkpoint

Hemanth Kolla, PASC, 12 June 2019 26

Checksums from Conservation Laws
Sandia
National
Laboratories

• General local conservation law (density p, flux J): —
Op
= —V' - J

Ot

• Conserved quantity in a region R (e.g., a computational subdomain): Q(R) = dV p

dQ(R)
R

• Integrated conservation law: dS • J
dt OR

• Q(R) changes only by flux through boundary, which is much faster to compute than Q(R)
itself:

• When discretized form of this conservation law holds, Q(R), is a local physics-based checksum
that can be updated efficiently and verified intermittently.

• No global communication beyond what solver already performs; flux in each subdomain can be
computed from data already being communicated between processes.

Hemanth Kolla, PASC, 12 June 2019 27

Application: 1D Linear Advection Equation

• 1D linear advection equation
00
+ v

00
— = 0

Ot Ox

• Consider the Lax-Wendroff stencil (with c = v At/Ax):

A.+1 ,, + i I At)
Y J 2 ̀-"k -̀' 1/VJ-1 + (1 - c2)01 + 1-2c(c - 1)0.7+1

• The discretized conserved quantity on each local subdomain is Q(0) = Ei oi

• The conserved quantity, checksum, can be updated independently of local state:

wort+1) won) + C(C + 1) (on 1 cylv - i) + C(C - 1)
 (Ork — CC2 \ 2

• Checksum update requires only neighbouring (ghost) points.

Sandia
National
Laboratories

Hemanth Kolla, PASC, 12 June 2019 28

Local vs Global Recovery
Sandia
National
Laboratories

■ The physics based checksum allow an efficient, purely local error detection mechanism.

■ Upon detection, suitable resilience mechanisms can be deployed.

■ Checkpoint/Rollback is most common; but global rollback recovery is a disproportionate
response for a purely local detection mechanism.

■ We examined "local" and "global" recovery using Fenix:

■ An MPI-based fault tolerance library for distributed resilience.

■ Primary design is for hard failure (process loss); built on top of MPI-ULFM.

■ Provides APIs for data "store"/ "restore" operations to recover from process loss.

■ Extended to provide purely local recovery (no MPI process loss, no communication for
store/restore).

Hemanth Kolla, PASC, 12 June 2019 29

Results: Weak scaling study
Sandia
National
Laboratories

• Weak scaling study of baseline, local_recovery and global_recovery versions of 1D stencil.

• Emulated silent error rate of 0.01, 1000 grid points per rank, 1000 iterations, runs on Cori.

ex
ec
ut
io
n
t
i
m
e
 (
s)

0.008

0.007 -

0.006 -

0.005 -

0.004 -

0.003 -

0.002 -

0.001 -

0.000
50 100

Weak scaling study

10 200 250

MPI ranks

300 350 400

• Local checkpoint/restart adds marginal
overhead.

• Does not disrupt weak scalability of the
baseline code.

• Problem size is cache friendly.

Hemanth Kolla, PASC, 12 June 2019 30

Results: Weak scaling study
Sandia
National
Laboratories

• Weak scaling study of baseline, local_recovery and global_recovery versions of 1D stencil.

• Emulated silent error rate of 0.01, 1000 grid points per rank, 1000 iterations, runs on Cori.

Weak scaling study

0.7 -

- baseline

—o— local_recovery

—0— global_recovery

0.6 -

0.5 -

E
0.4 -

c
o

u 0.3 -
a)
a)

0.2 -

0.1 -

0.0 -

50 100 150 200 250

MPI ranks

300 350

• Global recovery involves an global
agreement (anyone fails, everyone rolls
back).

• Not scalable, recovery cost scales with
number of ranks.

• Cascading cost of recovery (some ranks
stuck in an endless loop of restarts).

Hemanth Kolla, PASC, 12 June 2019 31

