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Outline: Talk of Two Halves 

1. Programming models for scalable resilience.

2. Algorithm Based Fault Tolerance: Global vs Local recovery.
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Motivations and Background

■ Reliability has become a major concern of large scale
computing systems

■ Complexity of hardware and software (number of components)
■ Overhead for reliability enhancement (20% penalty in power and

performance)
■ Performance variability across cores, accelerators and nodes

■ System level approach is expensive and C/R cannot resolve
all resilience issues.

■ Need better programming model support
■ Extension of Fault Tolerant MPI Proposal (Fenix)

■ On-node parallel computing
Asynchronous Many Task (AMT)

Resilience Extension of Kokkos

■ Distributed (AMT)
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Fenix: Extending MPI-ULFM
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■ MPI-ULFM has been proposed for the fault tolerance APIs of

the MPI standard (hard errors and failures)

■ Survived processes continues after MPI rank failures

■ New MPI functions for fixing MPI communicator

■ MPI_Comm_agree --- Sanity check (resilient collective)

■ MPI_Comm_revoke --- Invalidate MPI Communicator

■ MPI_Comm_shrink --- Fix MPI Communicator removing dead process

■ User is responsible for the recovery after MPI_Comm_shrink
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Fenix:
■ Fault Tolerant Programming Framework for MPI

Applications
■ Separation between process and data recovery

Allows third party software for data recovery
Multiple Execution Models

■ Process recovery

Extend MPI-ULFM
Process recovery through hot spare process pool
Process failure is checked at PMPI layer and recovery
happens automatically under the cover

■ Data recovery

In-memory data redundancy
Multi-versioning (similar to GVR by U Chicago & ANL)
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SANDIA REPORT

Specification of Fenix MPI Fault Tolerance
library
version 1.0

Min Gam. flek F Van def W.aart, 'Wen. and Menall Naas.

C) Sandia National Laboratories

Application

renix

MPI-ULFM
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Fenix Process Recovery Interface
If newcomm is NULL, Fenix tacitly
replaces comm everywhere with resilient

void Fenix Init (MPI Comm comm, communicator

/
App should use resilient
communicator
(newcomm) instead of
comm

MPI_Comm *newcomm,

int *T-Ole, 

int *argc, int ***argv,

int num_spare_ranks,

  FENIX_ROLE_INITIAL_RANK

> FENIX_ROLE_RECOVERED_RANK

> FENIX_ROLE_SURVIVOR_RANK

int spawn,‹

MPI Info,

int *error);

0:NO SPAWN

1:SPAWN

Process failure triggers process recovery and long-jump to Fenixinit

void Fenix Finalize ( );
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Non-Shrinking Model (with spare processes)

Compute Processes

'mem
loodoele•••

• Fenix automatically
corrects rank-ordering

• Spare ranks are ordered
to fill the lost ranks

Failure

Recovery

Spare processes
(allocated at job launch)

"" 
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Non-Shrinking Model (Spawn)
Compute processes

re--̀fr-_--1--fer--_--2-.
0000 *0 • •
40.1* 01* • • •

• Fenix automatically correct rank-
ordering

• Spare ranks are order to fill the lost
ranks

• Depends on the support of
MPl Comm_spawn

Failure

Recovery
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Shrink Model
Compute processes

---

1

_ip
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• Rank ordering after the
failure is determined by
MPI-ULFM.

• Fenix returns the program
to the beginning.
• User is responsible for

reconstruct the state

4111k

Failure

Recovery New

P2)
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FENIX can recover from frequent failures
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• Online recovery allows the usage of in-memory
checkpointing, 0(1s).

• Efficient recovery from high frequency node
failures, as exascale compels.

• With failures injected every 189, 94 and 47
seconds, the total job run-time penalty is as low
as 10%, 15% and 31%, respectively.

• This can dramatically improve by optimizing
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Node Level Parallel Programming Model
NM ' , NM NM NM

Pendi VIRTO

ONO

Done
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• Abstraction of computation and data objects allows automatic
resilience support
• Runtime scheduler orchestrates computations encapsulated by Task and

parallel_for
• Data abstractions to describe dependencies, data layout and access

patterns (Read/Write/RW)

• Simple extension to the existing API provides knobs to the users to
selectively apply resilience
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Resilient AMT Prototype

Original Task Launch

• Resilience Extension of hclib::async_await ( lambda,

Habanero C+-F
• AMT programming

hclib future t *fl,

hclib future t *f4);

..,

Interface by Vivek Sarkar

• Simple extension allows
the user to introduce 3
major resilient program
execution patterns
• Task Replication Interface

• Task Replay Interface

• ABFT Interface

Task Launch with Replication

diamond::async_await_check<N> (

lambda, hclib::promise<int>

, hclib future t *fl, ..,

hclib future t *f4);

Task Launch with Replay

replay::async_await_check<N>(

lambda, hclib::promise<int>

out, std::function<int(void*)>

error _ check _fn, void * params,

hclib future t *fl, ..

hclib future t *f4);
r
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Performance
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• On 2 Haswell CPU node (16x2 cores)
• 1D and 3D stencil code
• Conjugate Gradient with crank_1 sparse matrix

• Smith-Waterman (SW) algorithms

• Task-parallel Fault-Tolerant Cholesky Factorization
• Based on the Cao and Bosilca (IPDPS2016)

• The application data is over-decomposed.
• 4 way for stencil and CG

• 64x64 for SW and Cholesky
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Replay and replication do not double
the memory overhead

Synthetic Stencil 1D
vanilla vanilla Replay Replication Mix Replay Mix Replication

1 worker 0.19 GB 0.67 GB 1.02 GB 0.98 GB 1.08 GB 1.05 GB
32 workers 6.19 GB 6.67 GB 7.02 GB 6.99 GB 1 7.08 GB 7.05 GB

• Synthetic benchmark just launch empty tasks iteratively

• Resilient 1D stencil code execute 128 tiles (16K points per tile)
per iteration (4 tasks per worker)

• Executed 1M iterations

• Tested on NERSC's Cori (2 Haswell CPUs, 32 cores total, 2.3GHZ)
system
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Performance without faults
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■ Replication is expensive for 1D stencil, CG and SW.

■ Observed some cache hits with 3D stencil

■ High cache hits and critical path in task-base Cholesky

suffers less replication overhead
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Application delay is proportional to
the # of failures
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Scalability of 3D stencil code

(MPI+Reslinet HCLIB)
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• MPI-HCLIB implementation (1D, weak scaling, over-decomposed)
• MPI (2-sided) calls are running on special worker (thread-funnel).

• Preliminary results indicate replication overhead are masked by MPI overhead
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Ongoing Work: Resilient Kokkos

--•••=.11,10

.1fflIv!

Kokkos::View< Data Type Execution Space, Memory Space, .... >

GPU
Device
Memory

Data
Staging
System

MPI
/HDF
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• Kokkos provides abstraction of data and (on-node) parallel program
execution
• Kokkos::View provides an array with a variety of tunable parameters through template
• Execution Space and Memory Space to provide performance portability over multiple

node architecture
• Exploit C++ Lambda to support parallel program execution

• Kokkos' abstraction to enable resilient parallel computation!
• Resilient Execution Space for redundant program execution
• Resilient Memory Space for checkpointing and data redundancy

18



Parallel Programing with Kokkos
To
ci)

2

8-

0

o

for (size t i = 0; i < N; ++i)

{
/* loop body */

}

#pragma omp parallel for

for (size_t i = 0; i < N; ++i)

{

/* loop body */

}

parallel for (( N, [=], (const size t i)

{
/* loop body */

});

• Provide parallel loop operations using C++ language features
• Conceptually, the usage is no more difficult than OpenMP. The

annotations just go in different places.
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Resilient Kokkos enables resilient data
parallel computation with ease

Kokkos: : View <double *, ResilientSpace >A( 1000 );

parallel_for ( RangePolicy0( 0, 100 ), KOKKOS_LAMBDA (

const int i )

A( i )- . ;

Kokkos::View< > a( "a", ... );
Kokkos::View< > b( "b", );
Kokkos::View< > c( "c", );

for ( int iter = 0; iter < 100; ++iter )
{

Replication

parallel_for( RangePolicy0(0, 100 ), KOKKOS_LAMBDA
const int i)

{
A0)=...;

1);
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Lambda captures all Kokkos::View instances

// Will generate "compute_stuff/<view>.<iter>.bin" for all captured views
Kokkos::checkpoint( "compute_stuff", iter, true, KOKKOS_LAMBDA

Kokkos::parallel_for( N, KOKKOS_LAMBDA( int i ) {
// Some computation with a and b

} ) ;

Kokkos::parallel_for( N, KOKKOS_LAMBDA( int i ) {
// Some other computation with a and c

} );
} );

Automatic Checkpointing
Checkpoint

"loop 1 A B_C"
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Performance of MiniMD
Checkpoint Overhead (checkpoint every 10 steps)
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• Molecular Dynamics App: 32M atoms in 200x200x200 cells

• Strong scalability on 2CPUs/Node Haswell Cluster with FDR IB

• Checkpoint every 10 time steps

• Resilient Memory Space interfaced to VeloC (using the file-based checkpointing)

• Negligible overhead for Kokkos runtime

Hemanth Kolla, PASC, 12 June 2019 21



Outline 

1.

2. Algorithm Based Fault Tolerance: Global vs Local recovery.
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Algorithm Based Fault Tolerance (ABFT) 

• Handling hard failures is not enough for resilience.
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• An error does not always cause a crash, but leads to a "wrong" answer.

• Physics of the problem could be leveraged to detect an error, before wide spread failure.

• Application-level detection can be a powerful complement to resilient programming models

Levels:
We are here

System

  tsoftwa re

Hardware

Example uncertainties:

How solver apps will be (re)written (programming
models); prevalence of unreproducible bugs

Ability of bugs here to corrupt the app state

Rates of (initially) undetected errors; costs of mitigating
in hardware (higher voltage, redundancy, shielding)
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Generalizing ABFT: Physics Based Checksums 

■ Leverage existing work on ABFT for linear algebra, but incorporate physics.

■ Key idea: Focus only on detection of silent errors, treat them same as hard failures.

■ Enabling assumptions:

■ Failures are locally rare (component MTBFs are long, if not system MTBFs).

■ Checkpoint/restart in some form will be used/available.

■ Keep resilience overhead small.

■ Applications are solving physics equations that satisfy conservation laws.

■ Silent hardware errors and software anomalies will typically violate conservation.
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Checksums for Efficient Redundancy
Sandia
National
Laboratories

• Introduce a smaller side computation that remains consistent with solver state if no errors.

• Verify consistency intermittently, just before each checkpoint

Solver variables hecksums

Operation 11

1 Operation 2

Operation 3

•
•
.

lnit 
> ahm.Checkpoint

Verify
&

Update

Update

Update

Checkpoint
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Checksums for Efficient Redundancy
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• Introduce a smaller side computation that remains consistent with solver state if no errors.

• Verify consistency intermittently, just before each checkpoint

Solver variables Thecksums

Operation 11

1 Operation 2

Operation 3

lnit
>1116.Checkpoint

t‘I/Update

•
•
.

Verify
&

1/Update
Update

Checkpoint

Hemanth Kolla, PASC, 12 June 2019 26



Checksums from Conservation Laws
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• General local conservation law (density p, flux J): —
Op 
= —V' - J

Ot

• Conserved quantity in a region R (e.g., a computational subdomain): Q(R) = dV p

dQ(R) 
R

• Integrated conservation law: dS • J
dt OR

• Q(R) changes only by flux through boundary, which is much faster to compute than Q(R)
itself:

• When discretized form of this conservation law holds, Q(R), is a local physics-based checksum
that can be updated efficiently and verified intermittently.

• No global communication beyond what solver already performs; flux in each subdomain can be
computed from data already being communicated between processes.
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Application: 1D Linear Advection Equation 

• 1D linear advection equation 
00 
+ v

00
— = 0

Ot Ox

• Consider the Lax-Wendroff stencil (with c = v At/Ax ):

A.+1 ,, + i I At)
Y J 2 ̀-"k -̀' 1/VJ-1 + (1 - c2)01 + 1-2c(c - 1)0.7+1

• The discretized conserved quantity on each local subdomain is Q(0) = Ei oi

• The conserved quantity, checksum, can be updated independently of local state:

wort+1) won) + C(C + 1) ( on 1 cylv - i) + C(C - 1)
 (Ork — CC2 \ 2

• Checksum update requires only neighbouring (ghost) points.
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Local vs Global Recovery
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■ The physics based checksum allow an efficient, purely local error detection mechanism.

■ Upon detection, suitable resilience mechanisms can be deployed.

■ Checkpoint/Rollback is most common; but global rollback recovery is a disproportionate
response for a purely local detection mechanism.

■ We examined "local" and "global" recovery using Fenix:

■ An MPI-based fault tolerance library for distributed resilience.

■ Primary design is for hard failure (process loss); built on top of MPI-ULFM.

■ Provides APIs for data "store"/ "restore" operations to recover from process loss.

■ Extended to provide purely local recovery (no MPI process loss, no communication for
store/restore).
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Results: Weak scaling study
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• Weak scaling study of baseline, local_recovery and global_recovery versions of 1D stencil.

• Emulated silent error rate of 0.01, 1000 grid points per rank, 1000 iterations, runs on Cori.
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• Local checkpoint/restart adds marginal
overhead.

• Does not disrupt weak scalability of the
baseline code.

• Problem size is cache friendly.
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• Weak scaling study of baseline, local_recovery and global_recovery versions of 1D stencil.

• Emulated silent error rate of 0.01, 1000 grid points per rank, 1000 iterations, runs on Cori.
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• Global recovery involves an global
agreement (anyone fails, everyone rolls
back).

• Not scalable, recovery cost scales with
number of ranks.

• Cascading cost of recovery (some ranks
stuck in an endless loop of restarts).
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