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, | Energy deposition in flows by nanosecond pulse discharges

2 Arc filaments

= High temperature, constricted plasmas

Four DC arc filament discharges
interacting with a jet

" Flow control via heating [Leonov, 2004 & Webb et al., 2013]

" Rapid localized heating generates strong compression

wave; [Samimy et al., 2007 & Adamovich, 2009] -5
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“*Relative energy imparted into the flow; [Knight, 2008] ?
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*Q: laser pulse energy (kJ) *Too: jet exit temperature (K) .
*Poo: jet exit density (kg/m?) *V: plasma volume (m°) 012345678 91011121314
xH
*Cy: heat capacity (k] /kg/K) [Adamovich, 2009]

“*Previous work have studied laser induced plasmas with € = 77-2100; [Adelgren et al., 2005]

“*Nanosecond pulsed plasma actuators:
" Must be located at walls or jet exits
= High repetition rates: t < 100 kHz

= Strong scaling implications for large volume flows




Thermal effects of laser-induced plasmas

“*Provides non-intrusive deposition with high energy density
“*Rapid implementation allows changes in location, energy, and tepetition rate

“*Flow interaction time limited by the repetition rate of the laser

Mean OH-PLIF images of laser-induced ignition kernel
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“*Flame kernel size increases with deposited laser energy - stronger shockwaves [Mulla et al., 2016]

[Mulla et al., 2016]

“*Ignition enhancement from laser-induced plasmas in high energy flows is dependent on plasma
surface area [Wermer et al., 2017 '

Explore high-bandwidth effects of supersonic flows on pulse-burst laser-induced plasmas

Determine the conditions to sustain a pulse-burst laser-induced plasma at high Re jets




Experimental design

M: Mirror
P: Periscope

R: Razor Edge
J: Jet Location @

500 kHz pulse train with camera gate
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Burst rate: 5- 500 kHz, Burst duration: 1.5-10.5 ms
Total burst energy E ~ 15 J, e~13 — 300

Imaging of overexpanded, unperturbed jet

NPR = 25.8 NPR = 52.1
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C-D nozzle, M= 3.71
Nozzle pressure ratio (NPR) ~19.5-52.1

Toit = 80 K, Vit = 660 m/sdy = 6 mm




Laser-induced plasmas in quiescent air

Inverse Bremsstrahlung ‘° e As alanche “*Formation by two ionization mechanisms

£1 ° /] > Multiphoton=> seed electron generation

Impact 1onization

o

o Collisional cascade = electron avalanche

Tonization e QG Q QQ “*Vortex formation generates high velocity,

} Impact 1onization hot air jet
Ground State d ¢ “*Breakdown in air is stochastic

Multiphoton 1onization

Plasma-induced blast wave Core gas dynamics
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High repetition-rate breakdown in supersonic flow ‘—{

Energy deposition by burst rate
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o Stochasticity in pulse-burst laser-induced plasma in quiescent air increases at higher burst rates
+*Refresh rate of the supersonic jet sustains breakdown at t < 350 kHz

“*Sustained breakdown at © > 350 kHz, requires both greater flow and jet exit density

Coupling pulse-burst laser-induced plasma to the supersonic jet reduces stochasticity




High-bandwidth laser-plasma/jet-flow interactions ‘=

Unperturbed jet, NPR = 52.1 500 kHz burst rate
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Frame rate 5 MHz, exposure 10 ns

1.5
53 “* High repetition breakdown in the flow
:E: 1 % Permanent jet modulation
£ 05 * Continuous plasma emission at the jet core

i . ¢+ Shock re-excitation of plasma species
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Permanently disrupted jet N(Il) emission in jet core
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Flow dynamics of the plasma in the jet core

N(ll) perimeter and area

Probability of convection path

-
4 05 0 05 1

4
4 05 0 05 1
Width (x/d,))

1.0 -9

0.8

0.6

"
c—
0.4
4 05 0 05 1

Stretch Rate (s’1)

Plasma stretch rate
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Frame rate 5 MHz, exposure 100 ns

300 kHz burst rate
* Plasma is stretched during convection
“* Path of convection is repeatable

% Plasma kernel interaction length



Ultrafast laser-induced breakdown spectroscopy (LIBS)
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Variance throughout the burst Time evolution of single LIP
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“*Plasma varies shot-to-shot throughout burst

Wavelength (nm)

**Plasma initially has broadband emission from electron recombination processes

“*Strong spectral features appear as plasma is decaying

“*By 400 ns after breakdown, plasma no longer emits
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Preliminary temperature measurements

N(Il) Emission
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E= 17 mJ/pulse; Burst rate= 500 kHz;
Frame rate = 5 MHz, t_.,, = 100 ns
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“*Spectra was fit using NIST LIBS database
**Chip dispersion = 0.1357 nm/pixel

oSignal-to-noise tradeoff with resolution

“*N_~ 1e18 cm?, assumed from previous work

“*Peak emission (A~500 nm) = 3S,°P, °D states
oE, ~187,000 to 226,000 cm!

“*Secondary emission (A~518 nm) = °P°, °D° states
OF, ~244,000 cm’!

“*Sources of uncertainty

“*Only ionized nitrogen present in spectra

“*Raised baseline in fit

Temperature measurements can be inferred from ultra-high speed single-shot spectra




Conclusions

“* At all repetition rates, the presence of the jet was found to be critical and
beneficial to repeatable plasma breakdown.

“*Substantial deflection of supersonic, oblique shock waves was achieved with a
laser focus prior to the jet, within the jet and on the far side of the jet.

“*N(I) emission imaging at 5 MHz demonstrated a 500 kHz burst could
generate a near continuous plasma held in the core flow.

“*High burst rate laser-induced plasmas cause permanent, controllable actuation
of the flow for the entire burst period, and this actuation has significant
implications for non-intrusive, plasma flame holding

“*Ultrafast laser-induced breakdown spectroscopy can be used to make
temperature measurements of all laser plasma events
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131 Add reference showing plasma temperature versus time
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