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Energy deposition in flows by nanosecond pulse discharges

+Arc filaments

• High temperature, constricted plasmas
Four DC arc filament discharges

• Flow control via heating [Leonov, 2004 & Webb et al., 2013]

• Rapid localized heating generates strong compression
wave; [Samimy et al., 2007 & Adamovich, 2009] -5

-4

-3

+Relative energy imparted into the flow; [Knight, 2008] -2
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.Q: laser pulse energy (kJ) •Too: jet exit temperature (K) 5

poo: jet exit density (kg/m3) • V : plasma volume (m3)

Cp: heat capacity (kJ/kg/K)

interacting with a jet
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[Adamovich, 2009]

+Previous work have studied laser induced plasmas with E = 77-2100; [Adelgren et al., 2005]

+Nanosecond pulsed plasma actuators:

N Must be located at walls or jet exits

• High repetition rates: T 100 kHz

• Strong scaling implications for large volume flows
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Thermal effects of laser-induced plasmas

+Provides non-intrusive deposition with high energy density

+ Rapid implementation allows changes in location, energy, and repetition rate

Flow interaction time limited by the repetition rate of the laser

Mean OH-PLIF images of laser-induced ignition kernel

204 = 90 cm/s 470

s•
940

Max

mu,
[Mulla et al., 2016]
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+Flame kernel size increases with deposited laser energy 4 stronger shockwaves [Mulla et al., 2016]

+Ignition enhancement from laser-induced plasmas in high energy flows is dependent on plasma

surface area [Wermer et al., 2017]

Explore high-bandwidth effects of supersonic flows on pulse-burst laser-induced plasmas 11

Determine the conditions to sustain a pulse-burst laser-induced plasma at high Re jets



Experimental design
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f= -65 mm

f= 100 mm

P

M: Mirror

P: Periscope

R: Razor Edge

J: Jet Location M

M

f= 100 mm

f= 250 mm

f= 500 mm

500 kHz pulse train with camera gate
5

0
o 0.5

Time (ms)

Burst rate: 5- 500 kHz, Burst duration: 1.5-10.5 ms
Total burst energy E - 15 J, E —13 — 300
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Imaging of overexpanded, unperturbed jet

Shock
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C-D nozzle, M= 3.71
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Texit = 80 K, vexit = 660 m/s do = 6 mm
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Laser-induced plasmas in quiescent air

E

Impact ionization

Ionization

Ground State

Inverse Bremsstrahlung Avalanche +Formation by two ionization mechanisms

° Multiphoton4 seed electron generation

Collisional cascade 4 electron avalanche

+Vortex formation generates high velocity,
Impact ionization hot air j et

IVIultiphoton ionization

Plasma-induced blast wave

+Breakdown in air is stochastic
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High repetition-rate breakdown in supersonic flow
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+Stochasticity in pulse-burst laser-induced plasma in quiescent air increases at higher burst rates

+Refresh rate of the supersonic jet sustains breakdown at T < 350 kHz

+Sustained breakdown at T > 350 kHz, requires both greater flow and jet exit density

Coupling pulse-burst laser-induced plasma to the supersonic jet reduces stochasticity



High-bandwidth laser-plasma/jet-flow interactions
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Permanently disrupted jet N(II) emission in jet core

500 kHz burst rate

Frame rate 5 MHz, exposure 10 ns

High repetition breakdown in the flow

Permanent jet modulation

Continuous plasma emission at the jet core

Shock re-excitation of plasma species
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8 Flow dynamics of the plasma in the jet core

N(II) perimeter and area Plasma stretch rate
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+ Plasma is stretched during convection

Path of convection is repeatable

+ Plasma kernel interaction length
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Ultrafast laser-induced breakdown spectroscopy (LIBS)

Variance throughout the burst
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Time evolution of single LIP

—T = 0 ns
—T = 200 ns
—T = 400 ns

Bremsstrahlung
emission
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Wavelength (nm)

+Plasma varies shot-to-shot throughout burst

+Plasma initially has broadband emission from electron recombination processes

+Strong spectral features appear as plasma is decaying

+By 400 ns after breakdown, plasma no longer emits



Preliminary temperature measurements
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NOD Emission 

—Experimental Spectra
1—Simulated Spectra

480 490 500 510

Wavelength (nm)
520

E= 17 mJ/pulse; Burst rate= 500 kHz;
Frame rate = 5 MHz, Texp = 1 00 ns

Spectra was fit using NIST LIBS database

/Chip dispersion 0.1357 nm/pixel

oSignal-to-noise tradeoff with resolution

•Ne— 1e18 cm-3, assumed from previous work

+Peak emission (k-500 nm) 4 3S,5P, 3D states

oE. —187,000 to 226,000 cm-1

+Secondary emission (k-518 nm) 4 5P°, 5D° states

oE.-244,000 cm-1

+Sources of uncertainty

+Only ionized nitrogen present in spectra

+Raised baseline in fit

Temperature measurements can be inferred from ultra-high speed single-shot spectra



Conclusions11

❖At all repetition rates, the presence of the jet was found to be critical and
beneficial to repeatable plasma breakdown.

❖Substantial deflection of supersonic, oblique shock waves was achieved with a
laser focus prior to the jet, within the jet and on the far side of the jet.

. N (II) emission imaging at 5 MHz demonstrated a 500 kHz burst could
generate a near continuous plasma held in the core flow.

High burst rate laser-induced plasmas cause permanent, controllable actuation
of the flow for the entire burst period, and this actuation has significant
implications for non-intrusive, plasma flame holding

❖Ultrafast laser-induced breakdown spectroscopy can be used to make
temperature measurements of all laser plasma events
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13 Add reference showing plasma temperature versus time
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