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2 1 Examples of Compressible Turbulence

Interstellar Turbulence

Shock/Turbulence Interaction
Shocks/Shocklets interacting with acoustic waves

Supersonic Combustion
Heat release due to exothermic reactions



1 Compressible Turbulence
Compressible energy cascade is more complicated
than incompressible

• In compressible turbulence, there are complex non-linear
interactions of vortices, acoustic waves, and shock waves,
leading to strong couplings between the velocity fields and
the thermodynamic fields.

• The interaction between shock waves and rotating vortices
baroclinically creates new vortices, which are amplified by
compression and considerably increase the net vorticity.

• Thermal fluctuations and translational non-equilibrium play a
role in the baroclinic creation of turbulence.

• Both these classes of physical phenomena are observed at
the molecular level (mean-free-path level) and typically are
not included in the Navier-Stokes equations.
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Turbulent energy cascade:
Kinetic energy is generated at large scales,

transferred gradually to smaller scales and
dissipated finally by viscosity at small scales
close to the Kolmogorov length scale.



Taylor Green Flow
Taylor-Green (TG) vortex flow is a generic turbulent flow
• Incompressible TG flow is used in validation of codes and evaluation of subgrid-scale models
• Initial condition contains only a single length scale (single wave number)
Turbulent energy cascade can be observed numerically in TG flow
• Flow undergoes a rapid buildup of a fully turbulent dissipative spectrum
• Late-time flow exhibits .3 asic features of isotropic, homogeneous turbulence
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, Taylor-Green Simulation Conditions
Mach Numbers: 0.3, 0.6, 0.9, 1.2

Numerical parameters
Cubical domain, triply periodic boundaries

3 Side length = 27L, L = 0.0001 m, cells/side = 2000

) Cell size = 314 nm, total cells 20003 = 8 billion

Time step = 0.01-0.25 ns, near-neighbor collisions

Molecules/cell = 45, total molecules = 0.36 trillion

Gas parameters
Molecular mass =66.3x10-27 kg, monatomic

Temperature = 273.15 K, viscosity = 2.985x10-5 Pa. s

Molecular model = HS

Simulation Parameters
Simulations performed on LLNL/Sequoia

o 32,768 nodes (x16 cores, x2 threads), 30 hrs.

Taylor-Green flow from DNS and DSMC
simulations.



This is SPARTA
SPARTA = Stochastic rallel Rarefied-gas ime-accurate nalyzer

• 1D, 2D, 2D-Axisymmetric or 3D; Serial or Parallel.

• Cartesian, hierarchical grid.

• Octree (up to 16 levels in 64-bit cell ID).

• Load balancing, automatic grid adaptation, in situ visualization.

• Next-gen performance portability through Kokkos Abstractions.

• Sequoia (1.57 million cores).

• 100% Trinity utilization (heterogenous run).

• 100% Sierra (GPUs).

• Open source.

• 3000+ downloads, 100+ users worldwide.

• Collaborators: ORNL, LANL, ANL, LBNL, NASA, ESA, Academia.
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TG Ma 0.3, Energy Dissipation
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TG Ma 0.6, Energy Dissipation
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TG Ma 0.9, Energy Dissipation
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TG Ma 1.2, Energy Dissipation
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TG, Ma=1.2, Energy Dissipation
Constant Density Initial Condition
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1 TG Ma-0.3,T 8.7
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TG Ma 0.3, T 12.01
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1 TG Ma-0.6, T 9.60
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TG Ma 0.9,T 7.63
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1 TG Ma-0.9, T 10.93

I
2.10.02

150

100

- 50

- 0

I
50

-100

-150

-2. 1 e-F02

100

- 50

- 0

-50

-100

-12.02

E

DSMC
DNS

1[1 i l

Re=1500, Ma=0.9 -

I I I

10 15 20 25
Time (V,/ L)



1 TG Ma-0.9, T 14.77
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1 TG Ma=1.2, T 6.87
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1 TG Ma=1.2, T 9.32
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1 TG Ma=1.2, T 10.93
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TG Ma 1.2, T 12.56
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1 TG, Ma=1.2, T 17.09
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1 TG Ma=1.2, T 17.74
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TG Ma 1.2, T-18.56
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Conclusions

Nature is molecules, not equations, so simulations should be molecular as well.

DSMC Experiment Navier-Stokes

At low Mach numbers, DSMC and DNS produce the similar profiles.

At higher Mach numbers, shocks and shocklets in an apparently (?) baroclinic creation of vorticity

introduce more structure to the DSMC flow field.

Spectral analysis of the velocity fields is necessary.


