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Introduction

This guide is mainly intended for expert programmers familiar with Java concurrency, but unfamiliar with the
order modes available in JDK 9 provided by VarHandles. Mostly, it focuses on how to think about modes
when developing parallel software. Feel free to first read the Summary.

To get the shockingly ugly syntactic details over with: A VarHandle can be associated with any field, array element,
or static, allowing control over access modes. VarHandles should be declared as static final fields and explicitly
initialized in static blocks. By convention, we give VarHandles for fields names that are uppercase versions of the
field names. For example, in a Point class:

import java.lang.invoke.MethodHandles;
import java.lang.invoke.VarHandle;
class Point
volatile int x,
private static finll VarHandle X;
static {
try {
X = MethodHandles.lookup().
findVarHandle(Point.class, "x",
int.class);
} catch (ReflectiveOperationException e) {
throw new Error(e);
)

}
1 ...

}

Within some Point method, field x can be read, for example in Acquire mode using int v = X.getAcquire(this).
For more details, see the API documentation and JEP 193. Because most VarHandle methods are declared in terms
of vararg-style Objects, missing or wrong arguments are not caught at compile time, and results may require
useless-looking casts. As a matter of good practice, all fields intended to be accessed concurrently should be
declared as volatile, which provides the least surprising defaults when they are accessed directly without
VarHandles. This cannot be expressed when using VarHandles with array elements, so the array declarations should
be manually documented that they support concurrent access.

Also, JDK 9 versions of java.util concurrent.atomic classes include methods corresponding to these VarHandle
constructions, applied to the single elements or arrays held by the associated Atomic objects.

A planned follow-up will present more detailed examples of VarHandle usages and further coding guidelines.

Background

Back in the carliest days of i ing Java), comp were much simpler devices.
Uniprocessors single-stepped through instructions mmg memory cells, and emulated concumncy by context-
switching across threads. While many of the pi ing ideas about i and i

programming established during this era still hold, others turn out to be ill-matched for systems cmplcymg three
forms of parallelism that have since emerged:

1. Task ism. Under ion, if two threads execute basic actions A and B respectively,
then either A precedes B or B precedes A. But with multiple cores, A and B may be unordered -- neither
the other.
2. Memory panllehsm When memory is managed by multiple parallel agents (especially including caches),
lh:n variables need not be direct] nted by any single pllyslcll devmc So Ihc notion of a vmble isa
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A Formalization of Java’s Concurrent Access Modes

ANONYMOUS AUTHOR(S)

Java's memory model was recently updated and expanded with new access modes. The accompanying
documentation for these access modes is intended to make strong guarantees about program behavior that the
Java compiler must enforce, yet the documentation is frequently unclear. This makes the intended program
behavior ambiguous, impedes discussion of key design decisions, and makes it impossible to prove general
properties about the semantics of the access modes.

In this paper we present the first formalization of Java's access modes. We have constructed an axiomatic
model for all of the modes using the Herd modeling tool. This allows us to give precise answers to questions
about the behavior of example programs, called litmus tests. We have validated our model using a large suite
of litmus tests from existing research which helps to shed light on the relationship with other memory models.
We have also modeled the semantics in Coq and proven several general theorems including a DRF guarantee,
which says that if a program is properly synchronized then it will exhibit sequentially consistent behavior.
Finally, we use our model to prove that the unusual design choice of a partial order among writes to the same
location is unobservable in any program.

1 INTRODUCTION

The original Java memory model [Manson et al. 2005] included an early attempt to define the
semantics of lock-free shared memory programs running on the Java platform, but the definitions
were hard to understand and there was no easy way to check the behavior of example programs.
It was also later discovered that it ruled out existing compiler optimizations which it claimed to
support [Sevéik and Aspinall 2008). Since then, researchers have made great advances in memory
model design while studying other weak memory models like those for ARM [Alglave et al. 2008;
Pulte et al. 2017], C11 [Batty et al. 2011; Kang et al. 2017; Lahav et al. 2017; Vafeiadis et al. 2015,
Power [Alglave et al. 2014], and x86 [Owens et al. 2009].

Recently, the ninth version of the Java Development Kit updated and expanded Java’s memory
model using new "access modes”. Though the design of the access modes is inspired by C11's
memory orders [Committee et al. 2010], it differs in a few key ways. First, it sheds complicated
legacy features like release seq es and release accesses. Second, it includes a broad
but simple mechanism to forbid so called “out of thin-air” behavior [Batty and Sewell 2014]. Finally,
it makes no provision for a total order on writes to the same location. Taken together this suggests
new opportunities to use a simpler model, develop metatheory, and verify lock-free algorithms for
the Java platform.

However, the documentation [JDK9 2017; Lea 2017, 2018] is frequently ambiguous. This makes it
extremely difficult to provide definitive answers about program behavior and there is little hope
of proving important properties about the ics. Further, it impedes the di ion of key
features of the model’s design.

To addrece thece icennee we nrecent the firet formalization of lava’e accece modee Criticallv
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Theoretical Validation
Metatheorems required by the specification

{HZ} :
trco H
-> acquire_reads H
-> opaque_accesses H
-> acyclic (union (po H) (rf H)).
Proof.

Qed.

C sc { H} :
trco H
-> race_free H

-> acyclic (co H)

-> acyclic (sc (po H) H).
Proof.

Qed.
( nonoto { H1 H2 } :
acyclic (co H1)
-> trco H2
-> match H2 Hl
-> ~ fiat_vo H2
-> access_1lte_ordered H2 H1

-> acyclic (co H2).
Proof.

Qeg.
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{H}
trco H
-> acquire_reads H

Theorems D SRR e i

Proof.
Qeg.
Three main theorems

Further validation of our semantics trco H
-> race_free H
-> acyclic (co H)
-> acyclic (sc (po H) H).
Proof.
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Proof.

Qeg.



Theorems

Three main theorems
Further validation of our semantics

Unobservable partial
Impossible to construct a litmus test

{HZ} :
trco H
-> acquire_reads H
-> opaque_accesses H
-> acyclic (union (po H) (rf H)).
Proof.

Qed.
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Future Work

Update Java language spec
Documentation, Java stress tests

Cost of forbidding causal cycles
Performance evaluation, optimization techniques

Fuzzing Hotspot
Find behaviors allowed by VM, not by model

Logic for specified orders
Reasoning in SC, proof in Opaque Mode

Specified orders for crash protocols
Replace fsync with specified orders

Specified Orders as hardware synch.
Evaluating performance benefits over fences

Unified semantics for DS and Java
Partial order on writes is DS-like
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