This paper describes objective technical results and analysis. Any subjective views or opinions that might be expressed
in the paper do not necessarily represent the views of the U.S. Department of Energy or the United States Government.

SAND2019-11249C

A Gentle Introduction to
Java's New Memory Model

John Bender, Jens Palsberg (UCLA)

Sandia National Laboratories is a multimission
laboratory managed and operated by National
Technology & Engineering Solutions of Sandia,
LLC, a wholly owned subsidiary of Honeywell
International Inc., for the U.S. Department of
Energy’s National Nuclear Security
Administration under contract DE-NA0003525.

This research was conducted as a graduate student at UCLA

Sandia National Laboratoriesis a multimission laboratory managed and operated by National Technology & Engineering Solutions of Sandia, LLC, awholly owned
subsidiary of Honeywell International Inc., for the U.S. Department of Energy’s National Nuclear Security Administration under contract DE-NA0003525.

Introduction

C11

let sw = [(REL | ACQ_REL | SC)1;
([F]; sb)?; rs; rf;
[R & (RLX | REL | ACQ | ACQ_REL | SC)];
(sb; [F1)7;
[(ACQ | ACQ_REL | SC)]

Introduction

C11

let sw = [(REL | ACQ_REL | SC)1;
([F]; sb)?; rs; rf;
[R & (RLX | REL | ACQ | ACQ_REL | SC)];
(sb; [F1)7;
[(ACQ | ACQ_REL | SC)]

Introduction

C11

let sw = [(REL | ACQ_REL | SC)1;
([F]; sb)?; rs; rf;
[R & (RLX | REL | ACQ | ACQ_REL | SC)];
(sb; [F1)7?;
[(ACQ | ACQ_REL | SC)]

Introduction

Informal Specification

000 < > = Not Secure — gee.cs.oswego.edu/dl/htmi/j9mm.html ¢

Using JDK 9 Memory Order Modes

by Doug Lea.
Last update: Fri Nov 16 08:46:48 2018 Doug Lea

Introduction

This guide is mainly intended for expert programmers familiar with Java concurrency, but unfamiliar with the
order modes available in JDK 9 provided by VarHandles. Mostly, it focuses on how to think about modes
when developing parallel software. Feel free to first read the Summary.

To get the shockingly ugly syntactic details over with: A VarHandle can be associated with any field, array element,
or static, allowing control over access modes. VarHandles should be declared as static final fields and explicitly
initialized in static blocks. By convention, we give VarHandles for fields names that are uppercase versions of the
field names. For example, in a Point class:

import java.lang.invoke.MethodHandles;
import java.lang.invoke.VarHandle;
class Point
volatile int x,
private static finll VarHandle X;
static {
try {
X = MethodHandles.lookup().
findVarHandle(Point.class, "x",
int.class);
} catch (ReflectiveOperationException e) {
throw new Error(e);
)

}
1 ...

}

Within some Point method, field x can be read, for example in Acquire mode using int v = X.getAcquire(this).
For more details, see the API documentation and JEP 193. Because most VarHandle methods are declared in terms
of vararg-style Objects, missing or wrong arguments are not caught at compile time, and results may require
useless-looking casts. As a matter of good practice, all fields intended to be accessed concurrently should be
declared as volatile, which provides the least surprising defaults when they are accessed directly without
VarHandles. This cannot be expressed when using VarHandles with array elements, so the array declarations should
be manually documented that they support concurrent access.

Also, JDK 9 versions of java.util concurrent.atomic classes include methods corresponding to these VarHandle
constructions, applied to the single elements or arrays held by the associated Atomic objects.

A planned follow-up will present more detailed examples of VarHandle usages and further coding guidelines.

Background

Back in the carliest days of i ing Java), comp were much simpler devices.
Uniprocessors single-stepped through instructions mmg memory cells, and emulated concumncy by context-
switching across threads. While many of the pi ing ideas about i and i

programming established during this era still hold, others turn out to be ill-matched for systems cmplcymg three
forms of parallelism that have since emerged:

1. Task ism. Under ion, if two threads execute basic actions A and B respectively,
then either A precedes B or B precedes A. But with multiple cores, A and B may be unordered -- neither
the other.
2. Memory panllehsm When memory is managed by multiple parallel agents (especially including caches),
lh:n variables need not be direct] nted by any single pllyslcll devmc So Ihc notion of a vmble isa

Introduction

Informal Specification

Platform Specific
Architecture assumptions

000 < > = Not Secure — gee.cs.oswego.edu/dl/htmi/j9mm.html ¢

Using JDK 9 Memory Order Modes

by Doug Lea.
Last update: Fri Nov 16 08:46:48 2018 Doug Lea

Introduction

This guide is mainly intended for expert programmers familiar with Java concurrency, but unfamiliar with the
order modes available in JDK 9 provided by VarHandles. Mostly, it focuses on how to think about modes
when developing parallel software. Feel free to first read the Summary.

To get the shockingly ugly syntactic details over with: A VarHandle can be associated with any field, array element,
or static, allowing control over access modes. VarHandles should be declared as static final fields and explicitly
initialized in static blocks. By convention, we give VarHandles for fields names that are uppercase versions of the
field names. For example, in a Point class:

import java.lang.invoke.MethodHandles;
import java.lang.invoke.VarHandle;
class Point
volatile int x,
private static finll VarHandle X;
static {
try {
X = MethodHandles.lookup().
findVarHandle(Point.class, "x",
int.class);
} catch (ReflectiveOperationException e) {
throw new Error(e);
)

}
1 ...

}

Within some Point method, field x can be read, for example in Acquire mode using int v = X.getAcquire(this).
For more details, see the API documentation and JEP 193. Because most VarHandle methods are declared in terms
of vararg-style Objects, missing or wrong arguments are not caught at compile time, and results may require
useless-looking casts. As a matter of good practice, all fields intended to be accessed concurrently should be
declared as volatile, which provides the least surprising defaults when they are accessed directly without
VarHandles. This cannot be expressed when using VarHandles with array elements, so the array declarations should
be manually documented that they support concurrent access.

Also, JDK 9 versions of java.util concurrent.atomic classes include methods corresponding to these VarHandle
constructions, applied to the single elements or arrays held by the associated Atomic objects.

A planned follow-up will present more detailed examples of VarHandle usages and further coding guidelines.

Background

Back in the carliest days of i ing Java), comp were much simpler devices.
Uniprocessors single-stepped through instructions mmg memory cells, and emulated concumncy by context-
switching across threads. While many of the pi ing ideas about i and i

programming established during this era still hold, others turn out to be ill-matched for systems cmplcymg three
forms of parallelism that have since emerged:

1. Task ism. Under ion, if two threads execute basic actions A and B respectively,
then either A precedes B or B precedes A. But with multiple cores, A and B may be unordered -- neither
the other.
2. Memory panllehsm When memory is managed by multiple parallel agents (especially including caches),
lh:n variables need not be direct] nted by any single pllyslcll devmc So Ihc notion of a vmble isa

Introduction

Informal Specification

Platform Specific
Architecture assumptions

Undersynchronized

000 < > = Not Secure — gee.cs.oswego.edu/dl/htmi/j9mm.htm!

Using JDK 9 Memory Order Modes

by Doug Lea.
Last update: Fri Nov 16 08:46:48 2018 Doug Lea

Introduction

This guide is mainly intended for expert programmers familiar with Java concurrency, but unfamiliar with the
order modes available in JDK 9 provided by VarHandles. Mostly, it focuses on how to think about modes
when developing parallel software. Feel free to first read the Summary.

To get the shockingly ugly syntactic details over with: A VarHandle can be associated with any field, array element,
or static, allowing control over access modes. VarHandles should be declared as static final fields and explicitly
initialized in static blocks. By convention, we give VarHandles for fields names that are uppercase versions of the
field names. For example, in a Point class:

import java.lang.invoke.MethodHandles;
import java.lang.invoke.VarHandle;
class Point {
velatile int x, y;
private static final VarHandle X;
static {
try {
X = MethodHandles.lookup().
findVarfiandle(Point.class, "x",
int.class);
) catch (ReflectiveOperationException e) {
throw new Error(e);
)

}
1 ...
}

Within some Point method, field x can be read, for example in Acquire mode using int v = X.getAcquire(this).
For more details, see the API documentation and JEP 193. Because most VarHandle methods are declared in terms
of vararg-style Objects, missing or wrong arguments are not caught at compile time, and results may require
useless-looking casts. As a matter of good practice, all fields intended to be accessed concurrently should be
declared as volatile, which provides the least surprising defaults when they are accessed directly without
VarHandles. This cannot be expressed when using VarHandles with array elements, so the array declarations should
be manually documented that they support concurrent access.

Also, JDK 9 versions of java.util concurrent.atomic classes include methods corresponding to these VarHandle
constructions, applied to the single elements or arrays held by the associated Atomic objects.

A planned follow-up will present more detailed examples of VarHandle usages and further coding guidelines.

Background

Back in the carliest days of i ing Java), were much simpler devices.
Uniprocessors single-stepped through i instructions mmg memory cells, and emulated comumncy by context-
switching across threads. While many of the pi ing ideas about i and i

programming established during this era still hold, others turn out to be ill-matched for systems cmplcymg three
forms of parallelism that have since emerged:

1. Task ism. Under ion, if two threads execute basic actions A and B respectively,
then either A precedes B or B precedes A. But with multiple cores, A and B may be unordered -- neither
the other.
2. Memory panllehsm When memory is managed by multiple parallel agents (especially including caches),
lh:n variables need not be direct] nted by any single pllyslcal devmc So Ihc notion of a vmbl: isa

Introduction

Informal Specification

Platform Specific
Architecture assumptions
Undersynchronized

Slow
Oversynchronized

000 < > | = Not Secure — gee.cs.oswego.edu/dl/htmi/j9mm.htm!

Using JDK 9 Memory Order Modes

by Doug Lea.
Last update: Fri Nov 16 08:46:48 2018 Doug Lea

Introduction

This guide is mainly intended for expert programmers familiar with Java concurrency, but unfamiliar with the
memory order modes available in JDK 9 provided by VarHandles. Mostly, it focuses on how to think about modes
when developing parallel software. Feel free to first read the Summary.

To get the shockingly ugly syntactic details over with: A VarHandle can be associated with any field, array element,
or static, allowing control over access modes. VarHandles should be declared as static final fields and explicitly
initialized in static blocks. By convention, we give VarHandles for fields names that are uppercase versions of the
field names. For example, in a Point class:

import java.lang.invoke.MethodHandles;
import java.lang.invoke.VarHandle;
class Point {
volatile int x, y;
private static final VarHandle X;
static {
try {
X = MethodHandles.lookup().
findVarHandle(Point.class, "x",
int.class);
) catch (ReflectiveOperationException e) {
throw new Error(e);
)

}
1 ...
}

Within some Point method, field x can be read, for example in Acquire mode using int v = X.getAcquire(this).

For more details, see the API documentation and JEP 193. Because most VarHandle methods are declared in terms
of vararg-style Objects, missing or wrong arguments are not caught at compile time, and results may require
useless-looking casts. As a matter of good practice, all fields intended to be accessed concurrently should be
declared as volatile, which provides the least surprising defaults when they are accessed directly without
VarHandles. This cannot be expressed when using VarHandles with array elements, so the array declarations should
be manually documented that they support concurrent access.

Also, JDK 9 versions of java.util concurrent.atomic classes include methods corresponding to these VarHandle
constructions, applied to the single elements or arrays held by the associated Atomic objects.

A planned follow-up will present more detailed examples of VarHandle usages and further coding guidelines.

Background

Back in the carliest days of i ing Java), were much simpler devices.
Uniprocessors single-stepped through i instructions mmg memory cells, and emulated concumncy by context-
switching across threads. While many of the pi ing ideas about i and i

programming established during this era still hold, others turn out to be ill-matched for systems cmplcymg three
forms of parallelism that have since emerged:

1. Task ism. Under ion, if two threads execute basic actions A and B respectively,
then either A precedes B or B precedes A. But with multiple cores, A and B may be unordered -- neither
the other.
2. Memory panllchsm When memory is managed by multiple parallel agents (especially including caches),
lh:n variables need not be directl; nted by any single pllyslcal dcvwc So |hc notion of a vamble isa

|+

Introduction

Informal Specification
Architecture assumptions
Undersynchronized

Slow
Oversynchronized

let sw = [(REL | ACQ_REL | SC)1;
([F]; sb)?; rs; rf;
[R & (RLX | REL | ACQ | ACQ_REL | SC)1;
(sb; [F1)7?;
[(ACQ | ACQ_REL | SC)]

Informal Specification

Architecture assumptions

Undersynchronized

o

. N\ A

\ 1 ow
JINJ VYV

Oversynchronized

let sw

([F]; sb)?
[R & (RLX |
(sbs [[F]) %4
[(ACQ |

What is a memory model for?

What values can a read see?

v, What values can a read see?

Sequential Consistency

threado: threadl:
write 1 to vy read x
write 1 to x read y

Sequential Consistency

threado: threadl:
write 1 to vy read x
write 1 to x read y

Sequential Consistency

threado: threadl:
write 1 to vy read x
write 1 to x read y

Sequential Consistency

threado0: threadl:
write 1 to vy read x
write 1 to x read vy

Sequential Consistency

threado: threadl:
write 1 to vy read x
write 1 to x read y

Sequential Consistency

threado: threadl:
» write 1 to vy read x
write 1 to x read y

Sequential Consistency

threado: threadl:
write 1 to vy read x
» write 1 to x read vy

Sequential Consistency

thread0: threadl:
write 1 to vy »read « // 1
» write 1 to x read vy

Sequential Consistency

thread0: threadl:
write 1 to vy read x // 1
» write 1 to x »read v // 1

Sequential Consistency

v, What values can a read see”?

Sequential Consistency

threado: threadl:
write 1 to y read x
write 1 to x read y

threado: threadl:
write 1 to vy read
write 1 to read vy

1. Linear order of execution

threado0: threadl:
write 1 to vy read
write 1 to read vy

1. Linear order of execution
2. Program order consistent

threado0: threadl:
write 1 to vy read
write 1 to read vy

1. Linear order of execution
2. Program order consistent
3. Reads from last write

threado: threadl:
write 1 to vy read /
write 1 to read vy // 77

1. Linear order of execution
2. Program order consistent
3. Reads from last write

thread0: threadl:
write 1 to vy rf » read ’

-
-
-

write 1 to x -~ read vy // 77

1. Linear order of execution
2. Program order consistent
3. Reads from last write

threadO: threadl:

write 1 to vy f__ ”’lread
write 1 to x%-

1. Linear order of execution
» 2. Program order consistent
3. Reads from last write

read y /

(41

threadO: threadl:

—
-

write 1 to y—_ f __ wlread

=

write 1 to L - T —¥read y

» 1. Linear order of execution
2. Program order consistent
3. Reads from last write

??

threado: threadl:
write 1 toy — read '
write 1 to > ready // 22

» 1. Linear order of execution
2. Program order consistent
3. Reads from last write

thread0: threadl:
write 1 to y -._ rf read ’

-—
=~ -
-,

write 1 to T >read vy /

1. Linear order of execution
2. Program order consistent
» 3. Reads from last write

thread®: threadl:
write 1 toy —__ read
write 1 to "> read y

v, What values can a read see?

thread0: threadl:
write 1 toy —__ read
write 1 to "> read y

V2. Which write is paired with a read”?

V2.

threado: threadl:
write 1 toy —__ _f read '
write 1 to " >read vy /

IS paired with a read”?

V2.

init:
write 0 to vy

threado0: threadl:
write 1 toy —__ _f read '
write 1 to "> read y

IS paired with a read”?

Write elimination

init:
write 0 to vy

threado: threadl:
write 1 to y read x
write 1 to x read vy // 77

Write elimination
TA1tY

write 0 to vy

\
\
\

Moo
threadO: \\ threadl:

. \
write 1 to y v read x

Y
write 1 to x read y // 0O

Write elimination
init:

write 0 to vy

\
\
\

M orf
threadO: \\ threadl:

—
-
-~

Write elimination
init:
write 0 to vy

threado: threadl:
write 1 to vy ﬁ___,iread x // 1
write 1 to x¥%¥ -~~~ read y // 0 or 1

Write elimination
init:
write 0 to vy

threado: threadl:
write 1 to y 55\\5*read x // 1
write 1 to x read y // 0 or 1

Write elimination
TA1tY

write 0 to vy

\
\
\

N orf
threadO: \\ threadl:

write 1 to y s\\§\\\\\l:read x // 1
write 1 to x read y // 0 or 1

Write elimination
TA1tY

write 0 to vy

\
\
\

N orf
threadO: \\ threadl:

write 1 to vy 55\\§§\§\liread x // 1
write 1 to x read y // 0 or 1

Write elimination
TA1tY

write 0 to vy

\

AN
\\ rf
threadO: v threadl:

write 1 to y \\\\\\\\\l:read x // 1
write 1 to x read y // 0 or 1

3. Reads from last write

Write elimination
init:
write 0 to vy

threadO: >< threadl:

write 1 to vy \ read x // 1
write 1 to x read y // 0 or 1

3. Reads from last write

Write elimination
init:
write 0 to vy

\
\

\
\
threadO: >\< threadl:

write 1 toy —__ *read x // 1
"T=>vready // 1

3. Reads from last write

Write elimination
i1ty
write 0 to vy

threado0: threadl:
write 1 to vy 55\\5\\5*read x // 1
write 1 to x read vy // 1

V2.

init:
write 0 to vy

threado: threadl:
write 1 to vy read
write 1 to read vy

Which write is paired with a read”?

V3.

init:
write 0 to vy

threado0: threadl:
write 1 to vy read
write 1 to read vy

When are access effects visible?

V3.

init:
write 0 to vy

threado0: / threadl:
write 1 toy — read '
write 1 to “>read vy /

When are access effects visible?

to reads?

V3.

init:
write 0 to vy

threadO: ///// threadl:

write 1 toy — read
write 1 to T read y /

When are access effects visible?

to reads?

Write elimination
init:
write 0 to vy

threadO: threadl:
read x // 1

write 1 to y 5\\55\\\\\$
write 1 to x read vy // 1

SC

1. Linear order of execution
2. Program order consistent

Sequential Inconsistency
init:
write 0 to vy

thread0: threadl:
write 1 to vy read x // 1
write 1 to x read vy // 77

Sequential Inconsistency
init:
write 0 to vy

thread0: threadl:
write 1 to vy read x // 1
write 1 to x read vy // 77

Sequential Inconsistency
init:
write 0 to vy

thread0: threadl:
I write 1 to x read x // 1
write 1 to vy read vy // 77

Sequential Inconsistency
init:
write 0 to vy

threado: threadl:
Iwr'ite 1 to read x // 1
write 1 to vy read vy // 77

X

1. Linear order of execution
2. Program order consistent
3. Reads from last write

Sequential Inconsistency
init:
write 0 to vy

threado: threadl:
I write 1 to read x // 1
write 1 to vy read vy // 77

X

1. Linear order of execution

—2—Program-order-consistent—

3. Reads from last write

Sequential Inconsistency

init:
write 0 to vy

threadO: threadl:
write 1 to f"'--lt"--—>read x /] 1
write 1 to vy read y // 22

1. Linear order of execution

—2—Program-order-consistent—

3. Reads from last write

Sequential Inconsistency

init:
write 0 to vy

threado: threadl:
write 1 to x - --¢c—-—--- >read x // 1

write 1 to vy >< read y // 2?

1. Linear order of execution

—2—Program-order-consistent—

3. Reads from last write

Sequential Inconsistency
init:
write 0 to vy
\

\
\

\rf
threado: \\ threadl:
write 1 to x \read x // 1
write 1 to y-———Itn-——>read y // 0 or 1

1. Linear order of execution

—2—Program-order-consistent—

3. Reads from last write

Sequential Inconsistency
init:
write 0 to vy

threado: threadl:
write 1 to vy read x
write 1 to x read vy // 77

—4+—Linear-order-of-execution—
—2—Program-order-consistent—

3. Reads from last write

Sequential Inconsistency

init:
write 0 to vy

threado: threadl:
write 1 to vy f __-»read x // 1
write 1 to x--~""" read vy // 2?7

—4+—Linear-order-of-execution—
—2—Program-order-consistent—

3. Reads from last write

Sequential Inconsistency

init:
write 0 to vy

threado: threadl:
write 1 to vy f __-»read x // 1
write 1 to x&=-~"" read vy // 2?7

—4+—Linear-order-of-execution—
—2—Program-order-consistent—

3. Reads from last write

Sequential Inconsistency
init:
write 0 to vy

threadO: threadl:
2

write 1 to y \\\\\;*read x // 1
write 1 to x read vy // 77

—4+—Linear-order-of-execution—
—2—Program-order-consistent—

3. Reads from last write

V3. When are access effects visible?

init:
write 0 to vy

threadO:

write 1 to y 5\5\12\\5*read //
write 1 to read y |,

1. Linear order of execution
2. Program order consistent
3. Reads from last write

threadl:

(41

Visibility

init:

write 0 to vy

thread0:
write 1 to vy rf

-
-

: -

VY = ™

write 1 to x

-
-

Visibility

init:
write 0 to vy

threadO: threadl:

write 1 to vy V/O’read "
write 1 to read vy

1. Reads

Visibility

init:
write 0 to vy

threadO: threadl:

write 1 to vy V/O'read
write 1 to x read vy

1. Reads

Visibility
TRt
write 0 to vy

VO

threado: threadl:

write 1 to y_”/’lgff,,»read
write 1 to read vy

1. Reads
2. Initial writes

init:
write 0 to vy

VO

threadO: threadl:
write 1 to y-’,”lg’,,,»read
write 1 to read vy

write 2 to

1. Reads
2. Initial writes

init:
write 0 to vy

VO
threado: threadl:
write 1 to vy VO read
write 1 to If””””’?read y
write 2 to
1. Reads

2. Initial writes

init:
write 0 to vy

vO
threado0: threadl:
write 1 to vy VO read
write 1 to [;g”””,’*read y
write 2 to

1. Reads
2. Initial writes
3. Same location

init:
write 0 to vy

vO
threado0: threadl:
write 1 to vy VO read
write 1 to [;g””fffziread y
write 2 to

1. Reads
2. Initial writes
3. Same location

init:
write 0 to vy

VO
threado: threadl:
write 1 to vy VO read
write 1 to [;g””ffgzlread y
write 2 to

1. Reads
2. Initial writes
3. Same location

init:
write 0 to vy

vO
threado: threadl:
write 1 to vy VO read
write 1 to Mread y
write 2 to

1. Reads

2. Initial writes
3. Same location
4. Specified

Visibility

init:
write 0 to vy

VO
threado: threadl:
write 1 to vy VO read x
write 1 to [;g”””izlread y
write 2 to

1. Reads

2. Initial writes
3. Same location
4. Specified

Visibility
init:
write 0 to vy

threado: threadl:
write 1 to y read x // 1
write 1 to x read y // 0 or 1

Visibility
init:
write 0 to vy

VO
threadO: threadl:

write 1 to vy read x // 1
write 1 to x read y // 0 or 1

Visibility
init:
write 0 to vy

VO

thread0: threadl:
write 1 to vy f __-»read x // 1
write 1 to x---"" read y // 0 or 1

Visibility
init:

write 0 to vy

VO

threadO: threadl:

write 1 to y—””fif’,,»read x // 1
write 1 to x read y // 0 or 1

Visibility
init:

write 0 to vy

VO

threadO: threadl:

write 1 to yL”,,XE””lread x // 1
write 1 to x read y // 0 or 1

Visibility
init:

write 0 to vy

VO

threadO: threadl:

write 1 to vy P read x // 1
write 1 to xL—””fffgzlread y // © or 1

Visibility
init:

write 0 to vy

VO

threadO: threadl:

write 1 to vy - VO read x // 1
write 1 to xL—””’fszlread y // © or 1

Visibility
init:

write 0 to vy

VO

threadO: threadl:

write 1 to vy VO read x // 1
write 1 to Xi\\\“\-§~>read y // 0 or 1

Visibility
init:
write 0 to vy
\

\
\\ rf
threadO: v threadl:

write 1 to vy VO \xread x // 1
write 1 to Xi\\\\‘-~§~>read y // 0 or 1

VO

init:

V|S|b|l|ty write 0 to y
\
init: / "
3 threado: \ threadl:
write 0 to vy write 1 to y \ read x // 1
\\ write 1 to x 5\5\\\5“‘*-read y // @ or 1
\
VO
\\ rf
thread0: v threadl:

write 1 to vy VO * read x // 1
write 1 to x\read y // ©or 1

Visibility
init:
write 0 to vy

threadO: >< threadl:

write 1 to y \ read x // 1
write 1 to x read y // 0 or 1

Visibility
init:
write 0 to vy

\
\

threadO: v > threadl:

rf *read x // 1
"T~=>ready // 1

write 1 to y
write 1 to x

~_~
L)

VarHandle API

VarHandle API read vy

write 1 to vy

VarHandle API read v

write 1 to vy

! ,A‘"f*".ivﬂ
I iall |

a =Y,

Minimal guarantees y = 1;

VarHandle API read vy

write 1 to vy

Plain a =y;
Minimal guarantees y = 1;
Opa Y.getOpaque();

Acyclic causality Y.setOpaque(1);

VarHandle API read vy

write 1 to vy

Plain a =y;
Minimal guarantees y = 1;
Opa Y.getOpaque();

Nwdmcmﬁww Y.setOpaque(1);
Y.getAcquire();

Message passing Y.setRelease(1);

VarHandle API

—

Flain

Minimal guarantees

(A A ,»
Opaque

Acyclic causality

Message passing

SC semantics, volatile variables

read vy
write 1 to vy

a =Y,
y = 1;

Y.getOpaque();
Y.setOpaque(1l);

Y.getAcquire();
Y.setRelease(1l);

Y.getVolatile();
Y.setVolatile(1l);

OOPSLA'19
VarHandle API

Plain
Minimal guarantees

Opaque

Acyclic causality

Release-acquire
Message passing

Volatile
SC semantics, volatile variables

read vy
write 1 to vy

a
y

=Y
:l;

.getOpaque();
.setOpaque(1l);

.getAcquire();
.setRelease(l);

.getVolatile();
.setVolatile(1l);

OOPSLA'19
VarHandle API

Plain
Minimal guarantees

Opaque

Acyclic causality

Release-acquire
Message passing

Volatile
SC semantics, volatile variables

plain E opaque C release-acquire C volatile

Model
OOPSLA ‘19

A Formalization of Java’s Concurrent Access Modes

ANONYMOUS AUTHOR(S)

Java's memory model was recently updated and expanded with new access modes. The accompanying
documentation for these access modes is intended to make strong guarantees about program behavior that the
Java compiler must enforce, yet the documentation is frequently unclear. This makes the intended program
behavior ambiguous, impedes discussion of key design decisions, and makes it impossible to prove general
properties about the semantics of the access modes.

In this paper we present the first formalization of Java's access modes. We have constructed an axiomatic
model for all of the modes using the Herd modeling tool. This allows us to give precise answers to questions
about the behavior of example programs, called litmus tests. We have validated our model using a large suite
of litmus tests from existing research which helps to shed light on the relationship with other memory models.
We have also modeled the semantics in Coq and proven several general theorems including a DRF guarantee,
which says that if a program is properly synchronized then it will exhibit sequentially consistent behavior.
Finally, we use our model to prove that the unusual design choice of a partial order among writes to the same
location is unobservable in any program.

1 INTRODUCTION

The original Java memory model [Manson et al. 2005] included an early attempt to define the
semantics of lock-free shared memory programs running on the Java platform, but the definitions
were hard to understand and there was no easy way to check the behavior of example programs.
It was also later discovered that it ruled out existing compiler optimizations which it claimed to
support [Sevéik and Aspinall 2008). Since then, researchers have made great advances in memory
model design while studying other weak memory models like those for ARM [Alglave et al. 2008;
Pulte et al. 2017], C11 [Batty et al. 2011; Kang et al. 2017; Lahav et al. 2017; Vafeiadis et al. 2015,
Power [Alglave et al. 2014], and x86 [Owens et al. 2009].

Recently, the ninth version of the Java Development Kit updated and expanded Java’s memory
model using new "access modes”. Though the design of the access modes is inspired by C11's
memory orders [Committee et al. 2010], it differs in a few key ways. First, it sheds complicated
legacy features like release seq es and release accesses. Second, it includes a broad
but simple mechanism to forbid so called “out of thin-air” behavior [Batty and Sewell 2014]. Finally,
it makes no provision for a total order on writes to the same location. Taken together this suggests
new opportunities to use a simpler model, develop metatheory, and verify lock-free algorithms for
the Java platform.

However, the documentation [JDK9 2017; Lea 2017, 2018] is frequently ambiguous. This makes it
extremely difficult to provide definitive answers about program behavior and there is little hope
of proving important properties about the ics. Further, it impedes the di ion of key
features of the model’s design.

To addrece thece icennee we nrecent the firet formalization of lava’e accece modee Criticallv

Model
OOPSLA ‘19

Java Access Modes (JAM) Model

Instantiations in Herd[1] and Coqg

1. Alglave et al. 2014

A Formalization of Java’s Concurrent Access Modes

ANONYMOUS AUTHOR(S)

Java's memory model was recently updated and expanded with new access modes. The accompanying
documentation for these access modes is intended to make strong guarantees about program behavior that the
Java compiler must enforce, yet the documentation is frequently unclear. This makes the intended program
behavior ambiguous, impedes discussion of key design decisions, and makes it impossible to prove general
properties about the semantics of the access modes.

In this paper we present the first formalization of Java's access modes. We have constructed an axiomatic
model for all of the modes using the Herd modeling tool. This allows us to give precise answers to questions
about the behavior of example programs, called litmus tests. We have validated our model using a large suite
of litmus tests from existing research which helps to shed light on the relationship with other memory models.
We have also modeled the semantics in Coq and proven several general theorems including a DRF guarantee,
which says that if a program is properly synchronized then it will exhibit sequentially consistent behavior.
Finally, we use our model to prove that the unusual design choice of a partial order among writes to the same
location is unobservable in any program.

1 INTRODUCTION

The original Java memory model [Manson et al. 2005)] included an early attempt to define the
semantics of lock-free shared memory programs running on the Java platform, but the definitions
were hard to understand and there was no easy way to check the behavior of example programs.
It was also later discovered that it ruled out existing compiler optimizations which it claimed to
support [Sevéik and Aspinall 2008]. Since then, researchers have made great advances in memory
model design while studying other weak memory models like those for ARM [Alglave et al. 2008;
Pulte et al. 2017], C11 [Batty et al. 2011; Kang et al. 2017; Lahav et al. 2017; Vafeiadis et al. 2015],
Power [Alglave et al. 2014], and x86 [Owens et al. 2009].

Recently, the ninth version of the Java Development Kit updated and expanded Java’s memory
model using new "access modes”. Though the design of the access modes is inspired by C11's
memory orders [Committee et al. 2010], it differs in a few key ways. First, it sheds complicated
legacy features like release sequences and release-consume accesses. Second, it includes a broad
but simple mechanism to forbid so called “out of thin-air” behavior [Batty and Sewell 2014]. Finally,
it makes no provision for a total order on writes to the same location. Taken together this suggests

of proving important properties about the semantics. Further, it impedes the discussion of key
features of the model’s design.
To addrece thece icennee we nrecent the firet formalization of lava’e accece modee Criticallv

Model
OOPSLA ‘19

Java Access Modes (JAM) Model

Instantiations in Herd[1] and Coqg

Litmus Test Suite
80+ example programs

1. Alglave et al. 2014

A Formalization of Java’s Concurrent Access Modes

ANONYMOUS AUTHOR(S)

Java's memory model was recently updated and expanded with new access modes. The accompanying
documentation for these access modes is intended to make strong guarantees about program behavior that the
Java compiler must enforce, yet the documentation is frequently unclear. This makes the intended program
behavior ambiguous, impedes discussion of key design decisions, and makes it impossible to prove general
properties about the semantics of the access modes.

In this paper we present the first formalization of Java's access modes. We have constructed an axiomatic
model for all of the modes using the Herd modeling tool. This allows us to give precise answers to questions
about the behavior of example programs, called litmus tests. We have validated our model using a large suite
of litmus tests from existing research which helps to shed light on the relationship with other memory models.
We have also modeled the semantics in Coq and proven several general theorems including a DRF guarantee,
which says that if a program is properly synchronized then it will exhibit sequentially consistent behavior.
Finally, we use our model to prove that the unusual design choice of a partial order among writes to the same
location is unobservable in any program.

1 INTRODUCTION

The original Java memory model [Manson et al. 2005)] included an early attempt to define the
semantics of lock-free shared memory programs running on the Java platform, but the definitions
were hard to understand and there was no easy way to check the behavior of example programs.
It was also later discovered that it ruled out existing compiler optimizations which it claimed to
support [Sevéik and Aspinall 2008]. Since then, researchers have made great advances in memory
model design while studying other weak memory models like those for ARM [Alglave et al. 2008;
Pulte et al. 2017], C11 [Batty et al. 2011; Kang et al. 2017; Lahav et al. 2017; Vafeiadis et al. 2015],
Power [Alglave et al. 2014], and x86 [Owens et al. 2009].

Recently, the ninth version of the Java Development Kit updated and expanded Java’s memory
model using new "access modes”. Though the design of the access modes is inspired by C11's
memory orders [Committee et al. 2010], it differs in a few key ways. First, it sheds complicated
legacy features like release sequences and release-consume accesses. Second, it includes a broad
but simple mechanism to forbid so called “out of thin-air” behavior [Batty and Sewell 2014]. Finally,
it makes no provision for a total order on writes to the same location. Taken together this suggests

of proving important properties about the semantics. Further, it impedes the discussion of key
features of the model’s design.
To addrece thece icennee we nrecent the firet formalization of lava’e accece modee Criticallv

Model
OOPSLA ‘19

Java Access Modes (JAM) Model

Instantiations in Herd[1] and Coqg

Litmus Test Suite
80+ example programs

Theorems
3 main theorems, unobservability

1. Alglave et al. 2014

A Formalization of Java’s Concurrent Access Modes

ANONYMOUS AUTHOR(S)

Java's memory model was recently updated and expanded with new access modes. The accompanying
documentation for these access modes is intended to make strong guarantees about program behavior that the
Java compiler must enforce, yet the documentation is frequently unclear. This makes the intended program
behavior ambiguous, impedes discussion of key design decisions, and makes it impossible to prove general
properties about the semantics of the access modes.

In this paper we present the first formalization of Java's access modes. We have constructed an axiomatic
model for all of the modes using the Herd modeling tool. This allows us to give precise answers to questions
about the behavior of example programs, called litmus tests. We have validated our model using a large suite
of litmus tests from existing research which helps to shed light on the relationship with other memory models.
We have also modeled the semantics in Coq and proven several general theorems including a DRF guarantee,
which says that if a program is properly synchronized then it will exhibit sequentially consistent behavior.
Finally, we use our model to prove that the unusual design choice of a partial order among writes to the same
location is unobservable in any program.

1 INTRODUCTION

The original Java memory model [Manson et al. 2005)] included an early attempt to define the
semantics of lock-free shared memory programs running on the Java platform, but the definitions
were hard to understand and there was no easy way to check the behavior of example programs.
It was also later discovered that it ruled out existing compiler optimizations which it claimed to
support [Sevéik and Aspinall 2008]. Since then, researchers have made great advances in memory
model design while studying other weak memory models like those for ARM [Alglave et al. 2008;
Pulte et al. 2017], C11 [Batty et al. 2011; Kang et al. 2017; Lahav et al. 2017; Vafeiadis et al. 2015],
Power [Alglave et al. 2014], and x86 [Owens et al. 2009].

Recently, the ninth version of the Java Development Kit updated and expanded Java’s memory
model using new "access modes”. Though the design of the access modes is inspired by C11's
memory orders [Committee et al. 2010], it differs in a few key ways. First, it sheds complicated
legacy features like release sequences and release-consume accesses. Second, it includes a broad
but simple mechanism to forbid so called “out of thin-air” behavior [Batty and Sewell 2014]. Finally,
it makes no provision for a total order on writes to the same location. Taken together this suggests

of proving important properties about the semantics. Further, it impedes the discussion of key
features of the model’s design.
To addrece thece icennee we nrecent the firet formalization of lava’e accece modee Criticallv

Validation

Validation

Empirical Validation
Testing specified expectations of the JAM

OOPSLA'19
Validation

Empirical Validation
Testing specified expectations of the JAM

SC

A
+W-R 2
+MCA Rl
xX86
+W-W f‘ w
+R-W ——— \
+R-R ~ ARMvS8
*W\ R
ARMv7 Power
+total co A b b 4
P
/-
/
<
/
»JAM C11

+release seq.
+release-cons.
+total co

RMC

Validation

Empirical Validation
Testing specified expectations of the JAM

Theoretical Validation
Metatheorems required by the specification

Validation

Empirical Validation
Testing specified expectations of the JAM

Theoretical Validation
Metatheorems required by the specification

{HZ} :
trco H
-> acquire_reads H
-> opaque_accesses H
-> acyclic (union (po H) (rf H)).
Proof.

Qed.

C sc { H} :
trco H
-> race_free H

-> acyclic (co H)

-> acyclic (sc (po H) H).
Proof.

Qed.
(nonoto { H1 H2 } :
acyclic (co H1)
-> trco H2
-> match H2 Hl
-> ~ fiat_vo H2
-> access_1lte_ordered H2 H1

-> acyclic (co H2).
Proof.

Qeg.

Validation

JAM vs. x86, ARMv8, C11

JAM should admit more behaviors/executions

Validation

JAM vs. x86, ARMv8, C11

JAM should admit more behaviors/executions

+W-W
+R-W
+R-R

+total co

JAM

+W-R

rd
C11

+release seq.
+release-cons.
+total co

RMC

OOPSLA'19
Validation

JAM vs. x86, ARMvS8, C11

JAM should admit more behaviors/executions

+MCA Gl
x86 4
+W-W f‘ w
+R-W ——— \
+R-R ~ ARMvS8 «
N
ARMv7 Power
+total co A) > 4
> 4
/-
/
<
/
JAM C11
A
+release seq.
+release-cons.
+total co

RMC

OOPSLA'19

Validation

JAM vs. x86, ARMv8, C11

JAM should admit more behaviors/executions

+W-W
+R-W
+R-R

+total co

JAM

+W-R

rd
»Cl11

+release seq.
+release-cons.
+total co

RMC

\ | =\

Validation

JAM vs. x86, ARMv8, C11

JAM should admit more behaviors/executions

Herd! Tool

Explore executions, consult model to validate

1. Alglave et al. 2014

+MCA PR
o x86
+W= w®
+R-W N \
+R-R P: ARMvS
C
SN
ARMv7 Power
+total co A > 4
/
7/
/
4
/7
7z
JAM C11

A
+release seq.

+release-cons.
+total co

RMC

Validation

JAM vs. x86, ARMv8, C11

JAM should admit more behaviors/executions

Herd! Tool

Explore executions, consult model to validate

80+ Litmus Tests

Describe “behaviors”

1. Alglave et al. 2014

+total co

JAM

+W-R

ARMv7 Power
A ~

rd
C11

A
+release seq.

+release-cons.
+total co

RMC

Validation

JAM vs. x86, ARMv8, C11

JAM should admit more behaviors/executions

Herd! Tool

Explore executions, consult model to validate

80+ Litmus Tests
Describe “behaviors”

1. Alglave et al. 2014

Y5

Validation

JAM vs. x86, ARMv8, C11

JAM should admit more behaviors/executions

Herd! Tool

Explore executions, consult model to validate

80+ Litmus Tests
Describe “behaviors”

1. Alglave et al. 2014

Y5

Validation

JAM vs. x86, ARMv8, C11

JAM should admit more behaviors/executions

Herd! Tool

Explore executions, consult model to validate

80+ Litmus Tests
Describe “behaviors”

1. Alglave et al. 2014

Y5

Validation

JAM vs. x86, ARMv8, C11

JAM should admit more behaviors/executions

Herd! Tool

Explore executions, consult model to validate

80+ Litmus Tests
Describe “behaviors”

1. Alglave et al. 2014

1; »a = X;
1; b =y;
SC ARMv8

JAM vs. x86

OOPSLA'19

SC
+W-R _
JAM vs. x86 +MCA +W-R
: . x86 4
Expectation: the JAM is weaker +W-W 44 %
. . . +R-W = \
Permits more behaviors/executions +R-R « ARMvVS
*W\ N
Power
+total co A b 4

»JAM C11

A
+release seq.

+release-cons.
+total co

RMC

JAM vs. x86

Expectation: the JAM is weaker
Permits more behaviors/executions

x86

Allowed

Not Allowed

Not Allowed

Allowed

JAM

Allowed

Allowed

Not Allowed

Not Allowed

Count

16

JAM vs. x86

Expectation: the JAM is weaker
Permits more behaviors/executions

Allowed vs. Not Allowed
The behavior is allowed if one execution exists

x86

Allowed

Not Allowed

Not Allowed

Allowed

JAM

Allowed

Allowed

Not Allowed

Not Allowed

Count

16

JAM vs. x86

Expectation: the JAM is weaker
Permits more behaviors/executions

Allowed vs. Not Allowed
The behavior is allowed if one execution exists

x86

Allowed

Not Allowed

Not Allowed

Allowed

JAM

Allowed

Allowed

Not Allowed

Not Allowed

Count

16

JAM vs. x86

Expectation: the JAM is weaker
Permits more behaviors/executions

Allowed vs. Not Allowed
The behavior is allowed if one execution exists

x86

Allowed

Not Allowed

Not Allowed

Allowed

JAM

Allowed

Allowed

Not Allowed

Not Allowed

Count

16

JAM vs. x86

Expectation: the JAM is weaker
Permits more behaviors/executions

Allowed vs. Not Allowed
The behavior is allowed if one execution exists

x86

Allowed

Not Allowed

Not Allowed

Allowed

JAM

Allowed

Allowed

Not Allowed

Not Allowed

Count

16

JAM vs. x86

Expectation: the JAM is weaker
Permits more behaviors/executions

Allowed vs. Not Allowed
The behavior is allowed if one execution exists

x86

Allowed

Not Allowed

Not Allowed

Allowed

JAM

Allowed

Allowed

Not Allowed

Not Allowed

Count

16

JAM vs. x86

Expectation: the JAM is weaker
Permits more behaviors/executions

Allowed vs. Not Allowed
The behavior is allowed if one execution exists

x86

Allowed

Not Allowed

Not Allowed

Allowed

JAM

Allowed

Allowed

Not Allowed

Not Allowed

Count

16

JAM vs. x86

Expectation: the JAM is weaker
Permits more behaviors/executions

Allowed vs. Not Allowed
The behavior is allowed if one execution exists

x86

Allowed

Not Allowed

Not Allowed

Allowed

JAM

Allowed

Allowed

Not Allowed

Not Allowed

Count

16

OOPSLA'19 SC
wr }
JAM vs. ARMv8 ea| N\

x86
+W-W f w
+R-W e——ry \
C
*M .
ARMv7 Power
+total co ? Py ~
i
x>
/
-
2
»JAM C11

A
+release seq.

+release-cons.
+total co

RMC

" r_f”“ﬁ‘ 3',‘3‘ (:v,‘; e Ne
OOPSLA 19

JAM vs. ARMv8

Expectation: the JAM is weaker

SC
+W-R ¥
+MCA alk
i x86
+W= w®
+R-W f* = \
+R-R ~ ARMv8 <
*W R
Power
+total co A /1
/
7 4
7/
/
/

+release seq.
+release-cons.
+total co

RMC

OOPSLA'19
JAM vs. ARMv8 =i AW-R

Expectation: the JAM is weaker +W-W 44 %
Except for causal cycles iﬁ:\g P: AI\{MV84
3-8
}J\ N
Power
+total co A b 4

»JAM C11

A
+release seq.

+release-cons.
+total co

RMC

JAM vs. ARMv8

Expectation: the JAM is weaker
Except for causal cycles

ARMv8

Allowed

Not Allowed

Not Allowed

Allowed

JAM

Allowed

Allowed

Not Allowed

Not Allowed

Count

JAM vs. ARMv8

Expectation: the JAM is weaker
Except for causal cycles

ARMv8

Allowed

Not Allowed

Not Allowed

Allowed

JAM

Allowed

Allowed

Not Allowed

Not Allowed

Count

JAM vs. ARMv8

Expectation: the JAM is weaker
Except for causal cycles

ARMv8

Allowed

Not Allowed

Not Allowed

Allowed

JAM

Allowed

Allowed

Not Allowed

Not Allowed

Count

JAM vs. ARMv8

Expectation: the JAM is weaker
Except for causal cycles

|Load Buffering (LB), Causal Cycles
Forbidden explicitly in the JAM

ARMv8

Allowed

Not Allowed

Not Allowed

Allowed

JAM

Allowed

Allowed

Not Allowed

Not Allowed

Count

JAM vs. ARMv8

Expectation: the JAM is weaker

|Load Buffering (LB), Causal Cycles
Forbidden explicitly in the JAM

ARMv8

Allowed

Not Allowed

Not Allowed

Allowed

JAM

Allowed

Allowed

Not Allowed

Not Allowed

Count

OOPSLA'19
JAM vs. C11

+W-W
+R-W r—y \
+R-R <~ ARMvS8
‘\'W N
ARMv7 Power
+total co T Py v

r i
7/
4
7

»JAM » Cl1

A
+release seq.

+release-cons.
+total co

RMC

OOPSLA'19
JAM vs. C11

Expectation: the JAM is weaker

SC
+W-R ¥
+MCA e
i x86
+W= w®
+R-W f* ~ \
+R-R P: ARMvS
C
W B
Power
+total co 4

»JAM » Cl1

+release seq.
+release-cons.
+total co

RMC

OOPSLA'19
JAM vs. C11

Expectation: the JAM is weaker

Except for causal cycles

SC
+W-R ¥
+MCA e
i x86
+W= w®
+R-W f* = \
+R-R P: ARMvS
C
W B
Power
+total co 4

»JAM » Cl1

+release seq.
+release-cons.
+total co

RMC

JAM vs. C11

Expectation: the JAM is weaker
Except for causal cycles

C11

Allowed

Not Allowed

Not Allowed

Allowed

JAM

Allowed

Allowed

Not Allowed

Not Allowed

Count

12

33

JAM vs. C11

Expectation: the JAM is weaker
Except for causal cycles

C11

Allowed

Not Allowed

Not Allowed

Allowed

JAM

Allowed

Allowed

Not Allowed

Not Allowed

Count

12

33

JAM vs. C11

Expectation: the JAM is weaker
Except for causal cycles

C11

Allowed

Not Allowed

Not Allowed

Allowed

JAM

Allowed

Allowed

Not Allowed

Not Allowed

Count

12

33

JAM vs. C11

Expectation: the JAM is weaker
Except for causal cycles

Load Buffering (LB), Causal Cycles
Forbidden explicitly in the JAM

C11

Allowed

Not Allowed

Not Allowed

Allowed

JAM

Allowed

Allowed

Not Allowed

Not Allowed

Count

12

33

JAM vs. C11

Expectation: the JAM is weaker

Load Buffering (LB), Causal Cycles
Forbidden explicitly in the JAM

C11

Allowed

Not Allowed

Not Allowed

Allowed

JAM

Allowed

Allowed

Not Allowed

Not Allowed

Count

12

33

Theorems

Theorems

Three main theorems
Further validation of our semantics

1. Ou and Demsky 2018

Theorems

Three main theorems
Further validation of our semantics

e Forbidding causal cycles w/ acquire reads [1]

1. Ou and Demsky 2018

{HZ} :
trco H
-> acquire_reads H
-> opaque_accesses H
-> acyclic (union (po H) (rf H)).
Proof.

Qeg.

Theorems

Three main theorems
Further validation of our semantics

e Forbidding causal cycles w/ acquire reads [1]

1. Ou and Demsky 2018

Theorems

Three main theorems
Further validation of our semantics

e Forbidding causal cycles w/ acquire reads [1]

1. Ou and Demsky 2018

Theorems

Three main theorems
Further validation of our semantics

e Forbidding causal cycles w/ acquire reads [1]

1. Ou and Demsky 2018

Theorems

Three main theorems
Further validation of our semantics

e Forbidding causal cycles w/ acquire reads [1]

1. Ou and Demsky 2018

{HZ} :
trco H
-> acquire_reads H
-> opaque_accesses H
-> acyclic (union (po H) (rf H)).
Proof.

Qeg.

Theorems

Three main theorems
Further validation of our semantics

e Forbidding causal cycles w/ acquire reads [1]
e SC semantics with proper synchronization

{HZ} :
trco H
-> acquire_reads H
-> opaque_accesses H
-> acyclic (union (po H) (rf H)).
Proof.

Qed.

C sc { H} :
trco H
-> race_free H

-> acyclic (co H)

-> acyclic (sc (po H) H).
Proof.

Qea.

Theorems

Three main theorems
Further validation of our semantics

e Forbidding causal cycles w/ acquire reads [1]
e SC semantics with proper synchronization
e Monotonicity of access modes

{HZ} :
trco H
-> acquire_reads H
-> opaque_accesses H
-> acyclic (union (po H) (rf H)).
Proof.

Qed.

C sc { H} :
trco H
-> race_free H

-> acyclic (co H)

-> acyclic (sc (po H) H).
Proof.

Qed.
(nonoto { H1 H2 } :
acyclic (co H1)
-> trco H2
-> match H2 Hl
-> ~ fiat_vo H2
-> access_1lte_ordered H2 H1

-> acyclic (co H2).
Proof.

Qeg.

Theorems

Three main theorems
Further validation of our semantics

e Forbidding causal cycles w/ acquire reads [1]
e SC semantics with proper synchronization
e Monotonicity of access modes

{HZ} :
trco H
-> acquire_reads H
-> opaque_accesses H
-> acyclic (union (po H) (rf H)).
Proof.

Qea.

{HZ} :
trco H
-> race_free H
-> acyclic (co H)
-> acyclic (sc (po H) H).
Proof.

Qeg.

plain E opaque C release-acquire C volatile

{H}
trco H
-> acquire_reads H

Theorems D SRR e i

Proof.
Qeg.
Three main theorems

Further validation of our semantics trco H
-> race_free H
-> acyclic (co H)
-> acyclic (sc (po H) H).
Proof.

c { H}

Qed.
(nonoto { H1 H2 }
acyclic (co H1)
-> trco H2
-> match H2 Hl
-> ~ fiat_vo H2
-> access_1lte_ordered H2 H1
-> acyclic (co H2).
Proof.

Qeg.

Theorems

Three main theorems
Further validation of our semantics

Unobservable partial
Impossible to construct a litmus test

{HZ} :
trco H
-> acquire_reads H
-> opaque_accesses H
-> acyclic (union (po H) (rf H)).
Proof.

Qed.

C sc { H} :
trco H
-> race_free H

-> acyclic (co H)

-> acyclic (sc (po H) H).
Proof.

Qed.
(on { H1 H2 } :
acyclic (co H1)
-> trco H2
-> match H2 Hl
-> ~ fiat_vo H2
-> access_1lte_ordered H2 H1

-> acyclic (co H2).
Proof.

Qeg.

Future Work

Update Java language spec
Documentation, Java stress tests

Cost of forbidding causal cycles
Performance evaluation, optimization techniques

Fuzzing Hotspot
Find behaviors allowed by VM, not by model

Logic for specified orders
Reasoning in SC, proof in Opaque Mode

Specified orders for crash protocols
Replace fsync with specified orders

Specified Orders as hardware synch.
Evaluating performance benefits over fences

Unified semantics for DS and Java
Partial order on writes is DS-like

Thanks!

guestions”?

