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Introduction

This guide is mainly intended for expert programmers familiar with Java concurroncy, but unfamiliar with the
memory order modcs available in JDK 9 provided by VarHandlcs. Mostly. it focuses on how to think about modes
when developing parallel software. Feel frce to first read thc Summary.

To get thc shockingly ugly syntactic details ovcr with: A VarHandlc can bc associated with any field. array clement,
or static, allowing control over access modes. VarHandlcs should be declared as static final fields and explicitly
initialized in static blocks. By convcntion. wc givc VarHandles for fields names that arc uppercase versions of the
field narnes. For example, in a Point class:

import java.lang.invoka.Methodnandles,
import java.lang.inooka.Varnandle;
class Point (

volatile int x,
private static final Varnandle r;
static (
czy I
I . Methodnandles.lcokup().

lindVarnanale(Soint.oless, .x.,
int.class),

) catch (ReflectiveOperaticenxcepticon e) (
throw new Prror(e),

Within some Point method. field x can be read, for example in Acquire mode using int . getAcquire( this ).
For more details, see the API documentation and JEP 193. Because most VarHandlc methods arc declared in terms
of vararg-style Objects. missing or wrong arguments arc not caught at compilc time. and results may require
useless-looking casts. As a matter of good practice. all fields intended to bc accessed concurrently should bc
declared as conic in. which provides the least surprising defaults when they arc accessed directly without
VarHandles. This cannot bc expressed whcn using VarHandlcs with array elements. so the array declarations should
be manually documented that they support concurrent access.

Also. JDK 9 versions of java.util.concunentatomic classes include methods corresponding to Mese VarHandlc
constnictions. applied to the single elements or arrays held by the associated Atomic objects.

A planned follow-up will present more detailed examples of VarHandle usages and further coding guidelines.

Background

Back in the earliest days of concurrent programming (predating Java). computers wcrc much simpler dcviccs.
Uniprocessors single-stepped through instructions accessing memory cclls. and emulated concurrency by context-
switching across threads. Whilc many of thc pioneering ideas about coordination and interference in concurtent
programming established during this cra still hold. othcrs tum out to be ill-matched for systems cmploying three
fonns of parallelism that have since emerged:

I. Task parallelism. Under uniprocessor emulation. if two threads execute basic actions A and B respectivcly.
then either A prcccdes B or B procedes A. But with multiple cores. A and B may bc unordered -- neither
precedes the other.

2. Mcmory parallelism. When memory is managed by multiple parallcl agents (especially including caches).
then vmiables nccd not be directly represented by any single physical device. So the notion of a variable is a

•



Introduction

Informal Specification

PW-fnrm SnAnifin

Architecture assumptions

• • < > Nor Secure — 9eccs.oswego.edu/d11111./j9mm htn, I

Using JDK 9 Memory Order Modes

by Etug

Last update: Fri Nov 16 08:46,48 2018 Doug Lea

Introduction

This guide is mainly intended for expert programmers familiar with Java concurroncy, but unfamiliar with the
memory order modcs available in JDK 9 provided by VarHandles. Mostly. it focuses on how to think about modes
when developing parallel software. Feel free to filar read thc Summary.

To get thc shockingly ugly syntactic details ovcr with: A VarHandlc can bc associated with any field. array clement,
or static, allowing control over access modes. VarHandles should be declared as static final fields and explicitly
initialized in static blocks. By convention. we givc VarHandles for fields names that arc uppercase versions of the
field names. For example, in a Point class:

import java.lang.invoke.nethodnandles,
import java.lang.invoka.Varnandle;
class Point (

volatile int x,
private static final Varnandle X;
static (
tcy
I . Metnednandles.lcokup().

lindVarnandle(Solet.class, .x.,
int.class),

) catch (RetlectiveOperaticoinception e) (
throw new Mrror(e),

Within some Point method. field x can be read, for example in Acquire mode using int . gatneau re nia .
For morc details, see the API documentation and JEP 193. Because most VarHandle methods arc declared in terms
of varam-style Objects. missing or wrong arguments arc not caught at compile time. and results may require
useless-looking casts. As a matter of good practice. all fields intcndcd to bc accessed concurrently should bc
declared as voiat it.. which provides the least surprising defaults when they arc accessed directly without
VarHandles. This cannot bo expressed whco using VarHandles with array elements. so the array declarations should
be manually documented that they support concurrent access.

Also. JDK 9 versions of java.util.concunentatomic classes include methods conesponding to these VarHandle
constnictions. applied to the single elements or arrays held by the associated Atomic objects.

A planned follow-up will present more detailed examples of VarHandlc usages and funher coding guidelines.

Background

Back in the earliest days of concurrent programming (predating Java). computers wore much simpler devices.
Uniprocessors single-stepped through instructions accessing memory cclls. and emulated concurroncy by context-
switching across threads. Whilc many of thc pioneering ideas about coordination and interference in concunent
prograrnroing established during this cra still hold. others tum out to be ill-matched for systems employing three
fonns of parallelism that have since emerged:

I. Task parallelism. Under uniprocessor emulation. if two threads execute basic actions A and B rcspcctivcly.
then either A prcccdes B or B procedes A. But with multiple cores. A and B may be unordered -- neither
precedes the other.

2. Mcmory parallelism. When memory is managed by multiple parallel agents (especially including cachcs).
then vmiables nccd not be directly represented by any single physical device. So the notion of a variable is a

•



Introduction

Informal Specification

Platform Soecific
Architecture assumptions

incorrect
Undersynchronized

• • < )

Using JDK 9 Memory Order Modes

by Dirg

Last update: Fri Nov 16 08:46:48 2018 Doug Lea

Introduction

This guide is mainly intended for expert programmers familiar with Java concurrency, but unfamiliar with the
tnemory order modcs availablc in JDK 9 provided by VarHandlcs. Mostly. it focuses on how to think about modcs
when developing parallel software. Feel free to first read thc Summary.

To get thc shockingly ugly syntactic details over with: A VarHandlc can bc associated with any field. =ay clement,
or static, allowing control over access modcs. VarHandles should be declared as static final fields and explicitly
initialized in static blocks. By convention. we give VarHandles for fields names that arc uppercase versions of the
field namcs. For example, in a Point class:

import java.lang.invoke.nethodnandlen;
import java.lang.invoka.Varnendle;
class point (

volitile int x,
private static final Varnandla X;
xtxtla (
tcy I
I . Metbodnandles.lcokup().

findVarnandle(Solat.olass, .x.,
int.class),

) catch (ReflectiveOperaticoixception e) (
throw new arror(e),

Within some Point method. ficld x can be mad, for example in Acquire mode using int v . get/kegs re( thia .
For morc details, sec the API documentation and JEP 193. Because most VarHandlc methods arc declared in terms
of vararg-style Objects. missing or wrong arguments arc not caught at compilc time. and results may require
useless-looking casts. As a matter of good practice. all fields intcndcd to bc accessed concurrently should bc
declared as voiat it.. which provides the least surprising defaults when they arc accessed directly without
VarHandlcs. This cannot be expressed when using VarHandles with array elements. so the array declarations should
be manually documented that they support concurrent access.

Also. JDK 9 versions of java.util.concunentatomic classcs include methods corresponding to these VarHandlc
constnictions. applied to the single elements or arrays held by the associated Atomic objects.

A planned follow-up will present mom detailed examples of VarHandle usages and further coding guidelines.

Background

Back in dm earliest days of concurrent programming (predating Java). computcrs were much simpler devices.
Uniprocessors single-stepped through instructions accessing memory cclls. and emulated concumency by context-
switching across threads. Whilc many of thc pioneering idcas about coordination and interference in concunent
programming established during this cra still hold. others tum out to bc ill-matched for systems cmploying three
fonns of parallelism that have since emerged

I. Task parallelism. Undcr uniprocessor emulation. if two threads execute basic actions A and B respectively.
then either A precedes B or B pmcedes A. But with multiple cores. A and B may be unordered -- neither
precedes the other.

2. Memory parallclism. When memory is managed by multiple parallel agents (cspccially including caches).
then variables nccd not bc directly represented by any single physical device. So the notion of a variable is a

•



Introduction

Informal Specification

Platform Soecific
Architecture assumptions

incorrect
Undersynchronized

Slow
Oversynchronized

• • < )

Using JDK 9 Memory Order Modes

by Ettig

Last update, Fri Nov 16 08,46,48 2018 Doug Lea

Introduction

This guide is mainly intended for expert programmers familiar with Java concurrency, but unfamiliar with the
tnemory order modcs availablc in JDK 9 provided by VarHandles. Mostly. it focuses on how to think about modcs
when developing parallel software. Feel free to first read thc Summary.

To get thc shockingly ugly syntactic details ovcr with: A VarHandlc can bc associated with any field. =ay clement,
or static, allowing control over access modcs. VarHandles should be declared as static final fields and explicitly
inifialized in static blocks. By convention. we give VarHandles for fields names that arc uppercase versions of the
field namcs. For example, in a Point class:

import java.lsno.invoke.nethodnandles;
import java.lang.invoka.Varnandle;
class Point (

volatile int x,
private static final Varnandle X;
static (
tcy I
x Metnednandles.lcokup().

lindVarnandle(Solat.olass, .x.,
int.class),

) catch (ReflectiveOperaticoixception e) (
throw new Mrror(e),

Within some Point method. ficld x can be read, for example in Acquire mode using int v . get/kegs re( chi. .
For more details, sec the API documentation and JEP 193. Because most VarHandle methods arc declared in terms
of vararg-style Objects. missing or wrong arguments arc not caught at compilc time. and results may require
useless-looking casts. As a matter of good practice. all fields intcndcd to bc accessed concurrently should bc
declared as volat ;la. which provides the least surprising defaults when they arc accessed directly without
VarHandlcs. This cannot be expressed when using VarHandles with array elements. so the array declarations should
be manually documented that they support concurrent access.

Also. JDK 9 versions of java.util.concunentatomic classcs include methods corresponding to these VarHandlc
constnictions. applied to the single elements or arrays held by the associated Atomic objects.

A planned follow-up will present more detailed examples of VarHandle usages and further coding guidelines.

Background

Back in the earliest days of concurrent programming (predating Java). computcrs wcm much simpler devices.
Uniprocessors single-stepped through instructions accessing memory cclls. and emulated concunency by context-
switching across threads. Whilc many of thc pioneering ideas about coordination and interference in concunent
programming established during this cra still hold. others tum out to bc ill-matched for systems cmploying three
fonns of parallelism that have since emerged:

I. Task parallelism. Undcr uniprocessor emulation. if two threads execute basic actions A and B respcctivcly.
then either A precedes B or B on:cedes A. But with multiple cores. A and B may be unordered -- neither
precedes the other.

2. Memory parallelism. When memory is managed by multiple parallel agents (especially including caches).
then variables nccd not bc directly represented by any single physical device. So the notion of a variable is a

•



Introduction

Informal Specification

Platform Soenific
Architecture assumptions

incorrect
Undersynchronized

Slow
Oversynchronized

• • •

let sw = [(REL I ACQ_REL I SC)];

([F]; sb)?; rs; rf;

[R & (RLX I REL I ACQ I ACQ_REL I SC)];

(sb; [F])?;

[(ACQ I ACQ_REL I SC)]

• • •



Introduction

Informal Specification

Platform Soenific
Architecture assumptions

incorrect
Undersynchronized

Slow
Oversynchronized

• • •

let sw = L AC 1 SC)];

([F]; sb)?

[R & (RLX 1 1 ACQ 1 ACQ_REL 1 SC)];

(sb; [F])?'

[(ACQ 1 REL

• • •



Introduction

What is a memory model for?



Introduction

What values can a read see?



Introduction

vl . What values can a read see?



Sequential Consistency

threadO!

write 1 to

write 1 to

threadl:

read x

read y



Sequential Consistency

threadO!

write 1 to

write 1 to

threadl:

read x

read y

!„:
Hs 1,1 191011

Hitu 4111111 41:44;7 ""==== --i77771,7
, .,„ .110 111 .1.10110i iRf



Sequential Consistency

threadO!

write 1 to

write 1 to

threadl:

read x

read y

!„:
Hs 1,1 191011

Hitu 4111111 41:44;7 ""==== --i77771,7
, .,„ .110 111 .1.10110i iRf



Sequential Consistency

threadO• threadl:

write 1 to read

write 1 to read y

IN1 141
OS I/H 191 INI
"

!... Htui 101 /HI
It • tH .14.1=1. 9LLvairea,

-
ilq . ouu uNql.,



Sequential Consistency

threadO!

write 1 to

write 1 to

threadl:

read x

read y

[..t.,,r,.:.,,,,...,.....14.: 11==.-,........._

n11,-"In... 
==,..,

#241:::=.3...01: — 1.==== ,;;,,,,,,,,-.-.... .r...==.1

6_4..........._____.- 1111 .4 -...
. , „

pyr„ ,-., :le: : ' me , , - im , -... , um ,  e



Sequential Consistency

threadO:

► write 1 to y
write 1 to

x

y 1
ell M.
HI oiii 1111

—
_

141 " "
:4;

threadl:

read x

read y



Sequential Consistency

threadO:

write 1 to y

► write 1 to

threadl:

read x

read y



Sequential Consistency

threadO:

write 1 to y

► write 1 to

threadl:

► read
read y



Sequential Consistency

threadO:

write 1 to y

► write 1 to

threadl:

read x // 1

► read y // 1



Sequential Consistency

threadO:

write 1 to y

► write 1 to x

threadl:

read x // 1

► read y // 1

vl . What values can a read see?

x

41;;-the, -
r r



Sequential Consistency

threadO: threadl:

write 1 to y read

write 1 to read y



Sequential Consistency

thread0• threadl:

write 1 to read

write 1 to read y

1. Linear order of execution



Sequential Consistency

thread0• threadl:

write 1 to read

write 1 to read y

1. Linear order of execution
2. Program order consistent



Sequential Consistency

thread0• threadl:

write 1 to read

write 1 to read y

1. Linear order of execution
2. Program order consistent
3. Reads from last write



Sequential Consistency

threadO:

write 1 to

write 1 to

threadl:

read x // 1

read y // ??

1. Linear order of execution
2. Program order consistent
3. Reads from last write



Sequential Consistency

threadO:

write 1 to

write 1 to

threadl:

read x // 1

read y // ??

1. Linear order of execution
2. Program order consistent
3. Reads from last write



Sequential Consistency

threadO:

write 1 to

write 1 to 1
threadl:

!read x // 1

4read y // ??

1. Linear order of execution
► 2. Program order consistent

3. Reads from last write



Sequential Consistency

threadO:

write 1 to

write 1 to 1
threadl:

rf __Iread x // 1
-------4read y // ??

► 1. Linear order of execution
2. Program order consistent
3. Reads from last write



Sequential Consistency

threadO:

write 1 to

write 1 to

threadl:

read x // 1

read y // ??

► 1. Linear order of execution
2. Program order consistent
3. Reads from last write



Sequential Consistency

threadO:

write 1 to

write 1 to

threadl:

read x // 1

read y // 1

1. Linear order of execution
2. Program order consistent

► 3. Reads from last write



Sequential Consistency

threadO:

write 1 to

write 1 to

threadl:

read x // 1

read y // 1

vl . What values can a read see?



Sequential Consistency

threadO:

write 1 to

write 1 to

threadl:

read x // 1

read y // 1

v2. Which write is paired with a read?



Sequential Consistency

threadO:

write 1 to

write 1 to

threadl:

read x // 1

read y // 1

v2. Which writP is paired with a read?



Sequential Consistency

threadO:

write 1 to

write 1 to

write 0 to y

threadl:

read x // 1

read y // 1

v2. Which writP is paired with a read?



Write elimination
init:

write 0 to y

threadO:

write 1 to y

write 1 to

threadl:

read x

read y // ??



Write elimination
init:

write 0 to y
•
•
•
k rf

threadO: 
•
• threadl:

write 1 to y 
x
x read x
A

write 1 to read y // 0



Write elimination

write 0 to y

•
• rf

threadO! 
• 
• threadl:
•

write 1 to - _ rf • read x
... ... A... ...

write 1 to ---.' read y // 0 o r 1



Write elimination
init:

write 0 to y

threadO: threadl:

write 1 to y I i read x // 1

write 1 to 4' +read y // 0 or 1



Write elimination
init:

write 0 to y

threadO:

write 1 to y

write 1 to

threadl:

read x // 1

read y // 0 or 1



Write elimination
init:

write 0 to y
•
•
•
• rf

threadO: 
• 
• threadl:

write 1 to y 
•
• read x // 1

-V
write 1 to read y // 0 or 1



Write elimination
init:

write 0 to y

/ ‘x
.

x rf

threadO: 
x
x threadl:

write 1 to y 
•
• read x // 1

-V
write 1 to read y // 0 or 1



Write elimination
init:

write 0 to y

/ ‘x
.

x rf

threadO: 
x
x threadl:

write 1 to y 
•
• read x // 1

-V
write 1 to read y // 0 or 1

1. Linear order of execution
2. Proaram order rnncistent
3. Reads from Iast write



Write elimination
init:

write 0 to y

/ x•

thread() :

write 1 to y

write 1 to

threadl:
•
• read x // 1

-V
read y // 0 or 1

1. Linear order of execution
2. Proaram order rnncistent
3. Reads from Iast write



Write elimination
init:

write 0 to y

/ ‘.

threadO: threadl:

write 1 to y -___rf 
• 
• read x // 1

-4i
write 1 to 

_ 
- -*- read y // 1

1. Linear order of execution
2. Proaram order consistent
3. Reads from Iast write



Write elimination
init:

write 0 to y

threadO:

write 1 to y

write 1 to

threadl:

read x // 1

read y // 1



Write elimination

threadO:

write 1 to

write 1 to

write 0 to y

threadl:

read x // 1

read y // 1

v2. Which write is paired with a read?



Write elimination

threadO:

write 1 to

write 1 to

write 0 to y

threadl:

read x // 1

read y // 1

v3. When are access effects visible?



Write elimination

threadO:

write 1 to

write 1 to

write 0 to y

threadl:

read x // 1

read y // 1

v3. When are access effects visible?

to reads?



Write elimination

threadO:

write 1 to

write 1 to

write 0 to y

threadl:

read x // 1

read y // 1

v3. When are access effects visible?

to reads?



Write elimination

thread() !

write 1 to

write 1 to

SC

write 0 to y

threadl:

read x // 1

read y // 1

1. Linear order of execution
2. Program order consistent
3. Reads trom Iast write



Sequential Inconsistency

write () to y

threadO: threadl:

write 1 to read

write 1 to read

====



Sequential Inconsistency

write () to y

threadO: threadl:

write 1 to read

write 1 to read

====



Sequential Inconsistency

write () to y

threadO: threadl:

write 1 to read

I write 1 to read

====



Sequential Inconsistency
init:

write 0 to y

threadO:

t write 1 to

write 1 to

1. Linear order of execution
2. Program order consistent
3. Reads from last write

threadl:

read x // 1

read y // ??



Sequential Inconsistency

1. Linear order of execution
0.1 VS .1-

L. I 1 VIJ. 1 QI I I VI LAGI L—AJI IJIJLGI IL

3. Reads from last write

init:

write 0 to y

threadO:

I
write 1 to

write 1 to y

threadl:

read x // 1

read y // ??

/00 'AM RIM • L.
WI 101 #11111411

r̂7777V.11:t7i71"Ffri,wt at rai tmi #1 lof
• .1•11 NI MI 11111111 1.1101 oi lof _ 1'1



Sequential Inconsistency
init:

write 0 to y

thread() :

write 1 to

write 1 to y

threadl:

read x // 1

read y // ??

1. Linear order of execution
....,110,4 •••••••• A A I .11, 1,1,1 ; 1,4 0,1,64 

. I I V I LA III VI Li %.... I l.-• VI IJIJ IA, I I I.

3. Reads from last write



Sequential Inconsistency
init:

write 0 to y

thread() :

write 1 to x

write 1 to y

rf
threadl:

> read x // 1

 >read y // ??

1. Linear order of execution
....,110,4 •••••••• A A I .11, 1,1,1 ; 1,4 0,1,64 

. I I V I LA III VI Li %.... I l.-• VI IJIJ IA, I I I.

3. Reads from last write



Sequential Inconsistency
init:

write 0 to y
•
•

threadO:

write 1 to

write 1 to y

•
• rf
•

threadl:
•

read x // 1

 > read y // 0 or 1

1. Linear order of execution
ds ',I...A

L. I I ‘.../1 CII I I VI LIGI

3. Reads from last write



Sequential Inconsistency
init:

write 0 to y

threadO:

write 1 to y

write 1 to

threadl:

read x

read y // ??

1. Lincar ordcr of cxccution
2. Program ordcr consistcnt
3. Reads from last write



Sequential Inconsistency
init:

write 0 to y

threadO:

write 1 to y

write 1 to

threadl:

read x // 1

read y // ??

1. Lincar ordcr of cxccution
2. Program ordcr consistcnt
3. Reads from last write



Sequential Inconsistency
init:

write 0 to y

threadO: threadl:

write

write

1

1

to yt

to x
_ 

r-

- 
-

read x //

read y //

1

??

1. Lincar ordcr of cxccution
2. Program ordcr consistcnt
3. Reads from last write



Sequential Inconsistency
init:

write 0 to y

threadO: threadl:

write 1 to y read x // 1

write 1 to read y // ??

1. Lincar ordcr of cxccution
2. Program ordcr consistcnt
3. Reads from last write



Sequential Inconsistency
init:

write 0 to y

threadO: threadl:

write 1 to y ? read x // 1

write 1 to x read y // ??

v3. When are access effects visible?

1. Lincar ordcr of cxccution
2. Program ordcr consistcnt
3. Reads from last write



Sequential Inconsistency
init:

write 0 to y

threadO: threadl:

write 1 to y vo read x // 1

write 1 to x read y // ??

1. Linear order of execution
2. Program order consistent
3. Reads from last write



Visibility
init:

write 0 to y

threadO:

write 1 to y

write 1 to

threadl:

read x

read y



Visibility

write 0 to y

threadO! threadl:

write 1 to read x

write 1 to read y

1 . Reads



Visibility

write 0 to y

threadO! threadl:

write 1 to read x

write 1 to read y

1 . Reads



Visibility

write 0 to y

threadO!

write 1 to y

write 1 to

threadl:

vo read x

read y

1. Reads
2. Initial writes



Visibility

write 0 to y

vo

threadO:

write 1 to y

write 1 to x

write 2 to -

1. Reads
2. Initial writes

threadl:

read x

read y



Visibility

write 0 to y

threadO:

write 1 to y

write 1 to

write 2 to

1. Reads
2. Initial writes

threadl:

read

read



Visibility

threadO:

write 0 to y

write

write

write

1 to y

1 to x

2 to x
vo

v

threadl:

read x

read y

1. Reads
2. Initial writes
3. Same location



Visibility

write 0 to y

threadO:

write

write

write

1 to y

1 to x

2 to x
vo

vo

threadl:

read x

read y

1. Reads
2. Initial writes
3. Same location



Visibility

write 0 to y

threadO:

write

write

write

1 to y

1 to x

2 to x
vo

vo
svo

threadl:

read x

read y

1. Reads
2. Initial writes
3. Same location



Visibility

write 0 to y

threadO:

write 1 to y vo

write

write

1 to x

2 to x
vo

vo

threadl:

read x

read y

1. Reads
2. Initial writes
3. Same location
4. Specified



Visibility

write 0 to y

vo

threadO: threadl:

write 1 to y vo read x

write 1 to x

write 2 to x
vo

vo read /

1. Reads
2. Initial writes
3. Same location
4. Specified

1

r



Visibility
init:

write 0 to y

threadO:

write 1 to y

write 1 to

threadl:

read x // 1

read y // 0 or 1



Visibility
init:

write 0 to y

threadO:

write 1 to y

write 1 to

threadl:

read x // 1

read y // 0 or 1



Visibility
init:

write 0 to y

vo

threadO:

write 1 to y

write 1 to --

r r

threadl:

read x // 1

read y // 0 or 1



Visibility
init:

write 0 to y

threadO:

write 1 to y

write 1 to

threadl:

vo read x // 1

read y // 0 or 1



Visibility
init:

write 0 to y

vo

threadO: threadl:

write 1 to y- vo read x // 1

write 1 to read y // 0 or 1



Visibility
init:

write 0 to y

threadO:

write 1 to y

write 1 to x
svo

vo
svo

threadl:

read x // 1

read y // 0 or 1



Visibility
init:

write 0 to y

threadO:

write 1 to y

write 1 to x
vo

threadl:

vo read x // 1
vo read y // 0 or 1



Visibility
init:

write 0 to y

threadO:

write 1 to y

write 1 to

threadl:

vo read x // 1

read y // 0 or 1



Visibility
init:

write () to y
•
•

vo •
k a

threadO: 
• 
• threadl:

write 1 to y vo 
•
• read x // 1

41
write 1 to read y // 0 or 1



Visibility

init:

write 0 to y
•
•
•
k

threadO• ♦ threadl:

write 1 to 
•

y vo • read x // 1

write 1 to read y // 0 or 1

ni t :

write 0 to y

threadO:

write 1 to y

write 1 to

VO

\rf
threadl:

read x // 1

read y // or 1



Visibility
init:

write 0 to y
•
•

vo

threadO: threadl:

write 1 to y vo 
• 
• read x // 1

-4i
write 1 to read y // 0 or 1



Visibility
init:

write 0 to y
•
•

vo

threadO: threadl:

write 1 to y ___rf 
• 
• read x // 1

-
write 1 to ---.)-

-4i
read y // 1



OOPSLA'19

VarHandle API



OOPSLA'19

VarHandle API read y

write 1 to y



OOPSLA'19

VarHandle API

Plain
Minimal guarantees

read y

write 1 to y

a = y;

y = 1;



OOPSLA'19

VarHandle API

Plain
Minimal guarantees

Opaque
Acyclic causality

read y

write 1 to y

a = y;

y = 1;

Y.getOpaque();

Y.setOpaque(1);



OOPSLA'19

VarHandle API

Plain
Minimal guarantees

Opaque
Acyclic causality

Release-acquire
Message passing

read y

write 1 to y

a = y;

y = 1;

Y.getOpaque();

Y.setOpaque(1);

Y.getAcquire();

Y.setRelease(1);



OOPSLA'19

VarHandle API

Plain
Minimal guarantees

Opaque
Acyclic causality

Release-acquire
Message passing

\/nlatilp

SC semantics, volati le variables

read y

write 1 to y

a = y;

y = 1;

Y.getOpaque();

Y.setOpaque(1);

Y.getAcquire();

Y.setRelease(1);

Y.getVolatile();

Y.setVolatile(1);



OOPSLA'19

VarHandle API

Plain
Minimal guarantees

Opaque
Acyclic causality

Release-acquire
Message passing

\/nlatilp

SC semantics, volati le variables

read y

write 1 to y

a = y;

y = 1;

Y.getOpaque();

Y.setOpaque(1);

Y.getAcquire();

Y.setRelease(1);

Y.getVolatile();
\.,/ Y.setVolatile(1);



OOPSLA'19

VarHandle API

Plain
Minimal guarantees

Opaque
Acyclic causality

Release-acquire
Message passing

\ /nlati lp

1

SC semantics, volati le variables \/

plain E opaque E release-acquire E volatile



Model

OOPSLA '1 9
A Formalization of Java's Concurrent Access Modes

A N 0 NY MOU A UTHO R(S)

Java's memory model was recently updated and expanded with new access modes. The accompanymg
documentation for these access modes is intended to make strong guarantees about program behavior that the
Java compiler must enforce, yet Ihe documentation is frequently unclear. This makes the intended program
behavior ambiguous, impedes discussion of key design decisions, and makes it impossible to prove general
properlies about the semantics of the access modes.

10 
In this paper we present the first formalization of Java's access modes. We have constructed an axiomatic

model for all of the modes using the Herd modeling tool. This allows us to give precise answers to queslions
ti

aboul the behavior of example programs, called litmus tesls. We have validated our model using a large suite
of litmus tests from existing research which helps to shed light on the relationship wilh other memory models.

" We have also modeled the semantics in Coq and proven several general theorems including a DRF guarantee.
" which says thal if a program is properly synchronized then it will exhibit sequentially consistent behavior.
‘s Finally, we use our model to prove that the unusual design choice of a partial order among writes to the same
La location is unobservable in any program.

17

1 INTRODUCTION
is
0 

The original Java memory model [Manson et al. 2005] included an early attempt to define the
semantics of lock-free shared memory programs running on the Java platform, but the definitions

1, were hard to understand and there was no easy way to check the behavior of example programs.
It was also later discovered that it ruled out existing compiler optimizations which it claimed to
support [Sevtik and Aspinall 2008]. Since then, researchers have made great advances in memory

s model design while studying other weak memory models like those for ARM [Alglave et al. 2008;

26 
Pulte et al. 2017], C11 [Batty et al. 2011; Kang et al. 2017; Lahav et al. 2017; Vafeiadis et al. 2015],

1, Power [Alglave et al. 2014], and x86 [Owens et al. 2009].

8 
Recently, the ninth version of the Java Development Kit updated and expanded Java's memory

29 
model using new 'access modes". Though the design of the access modes is inspired by CI l's

0 
memory orders [Committee et al. 2010], it differs in a few key ways. First, it sheds complicated
legacy features like release sequences and release-consume accesses. Second, it includes a broad
but simple mechanism to forbid so called "out of thin-air" behavior [Batty and Sewell 2014]. Finally,
it makes no provision for a total order on writes to the same location. Taken together this suggests

15

4 
new opportunities to use a simpler model, develop metatheory, and verify lock-free algorithms for
the Java platform.

16 
However, the documentation [JDK9 2017; Lea 2017, 2018] is frequently ambiguous. This makes it

extremely difficult to provide definitive answers about program behavior and there is little hope

8 
of proving important properties about the semantics. Further, it impedes the discussion of key

o features of the model's design.
Tn address these irmses we nresent the firat fnrmaliratinn nf laya'a access rrityles Critically
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1 INTRODUCTION

The original Java memory model [Manson et al. 2005] included an early attempt to define the
semantics of lock-free shared memory programs running on the Java platform, but the definitions
were hard to understand and there was no easy way to check the behavior of example programs.
It was also later discovered that it ruled out existing compiler optimizations which it claimed to
support [Sevtik and Aspinall 2008]. Since then, researchers have made great advances in memory
model design while studying other weak memory models like those for ARM [Alglave et al. 2008;
Pulte et al. 2017], C11 [Batty et al. 2011; Kang et al. 2017; Lahav et al. 2017; Vafeiadis et al. 2015],
Power [Alglave et al. 2014], and x86 [Owens et al. 2009].

Recently, the ninth version of the Java Development Kit updated and expanded Java's memory
model using new 'access modes". Though the design of the access modes is inspired by CIrs
memory orders [Committee et al. 2010], it differs in a few key ways. First, it sheds complicated
legacy features like release sequences and release-consume accesses. Second, it includes a broad
but simple mechanism to forbid so called ''out of thiri-air" behavior [Batty and Sewell 2014]. Finally,
it makes no provision for a total order on writes to the same location. Taken together this suggests
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Validation

Empirical Validation
Testing specified expectations of the JAM

Theoretical Validation
Metatheorems required by the specification

rem acq_causality { H } :
trco H
-> acquire_reads H
-> opaque_accesses H
-> acyclic (union (po H) (rf H)).

Proof.

Qed.

,em drf_sc { H } :
trco H
-> race_free H
-> acyclic (co H)
-> acyclic (sc (po H) H).

Proof.

Qed.

Theorem monotonicity { H1 H2 } :
acyclic (co H1)
-> trco H2
-> match H2 H1
-> fiat_vo H2
-> access_lte_ordered H2 H1
-> acyclic (co H2).

Proof.

Qed.
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threadO:

y = 1;

x = 1;

threadl:

a = x;

b = y;
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Conclusion

Future Work

Update Java language spec
Documentation, Java stress tests

Cost of forbidding causal cycles
Performance evaluation, optimization techniques

Fuzzing Hotspot
Find behaviors allowed by VM, not by model

Logic for specified orders
Reasoning in SC, proof in Opaque Mode

Specified orders for crash protocols
Replace fsync with specified orders

Specified Orders as hardware synch.
Evaluating performance benefits over fences

Unified semantics for DS and Java
Partial order on writes is DS-like



Thanks!
questions?


