
A Gentle Introduction to
Java's New Memory Model

poccrntrEn tr? y

John Bender, Jens Palsberg (UCLA)

This research was conducted as a graduate student at UCLA
Sandia National. Laboratories is a multimission
laboratm managed and operated by National
Technology a Engineering Solutions of Sandia,
LLC, a wholly owned subsidiary of 1-loneywell
international. Inc., for the U.S. Department of

Energy's National Nuclear Security
Administration under contract DE-NA0003525.

SAND2019-11249C

This paper describes objective technical results and analysis. Any subjective views or opinions that might be expressed
in the paper do not necessarily represent the views of the U.S. Department of Energy or the United States Government.

Sandia National Laboratories is a multimission laboratory managed and operated by National Technology & Engineering Solutions of Sandia, LLC, a wholly owned
subsidiary of Honeywell International Inc., for the U.S. Department of Energy’s National Nuclear Security Administration under contract DE-NA0003525.

Introduction

C1 1

• • •

let sw = [(REL 1 ACQ_REL 1 SC)];

([F]; sb)?; rs; rf;

[R & (RLX 1 REL 1 ACQ 1 ACQ_REL 1 SC)];

(sb; [F])?;

[(ACQ 1 ACQ_REL I SC)]

Introduction

C1 1

• • •

let sw = [(REL 1 ACQ_REL 1 SC)];

([F]; sb)?; rs; rf;

[R & (RLX 1 REL I ACQ 1 ACQ_REL 1 SC)];

(sb; [F])?;

[(ACQ 1 ACQ_REL I SC)]

Introduction

C1 1

• • •

let sw = [(REL 1 ACQ_REL 1 SC)];

([F]; sb)?; rs; rf;

[R & (RLX 1 REL 1 ACQ 1 ACQ_REL 1 SC)];

(sb; [F])?;

[(ACQ 1 ACQ_REL I SC)]

Introduction

C1 1

20

Introductior

Informal Specification
• _ • < > ,.or secure — cieecteswecteeeu/doumommntn,

Using JDK 9 Memory Order Modes

by Douglca.

Last update: Fn Nov 16 08:46,48 2018 Doug Lea

Introduction

This guide is mainly intended for expert programmers familiar with Java concurroncy, but unfamiliar with the
memory order modcs available in JDK 9 provided by VarHandlcs. Mostly. it focuses on how to think about modes
when developing parallel software. Feel frce to first read thc Summary.

To get thc shockingly ugly syntactic details ovcr with: A VarHandlc can bc associated with any field. array clement,
or static, allowing control over access modes. VarHandlcs should be declared as static final fields and explicitly
initialized in static blocks. By convcntion. wc givc VarHandles for fields names that arc uppercase versions of the
field narnes. For example, in a Point class:

import java.lang.invoka.Methodnandles,
import java.lang.inooka.Varnandle;
class Point (

volatile int x,
private static final Varnandle r;
static (
czy I
I . Methodnandles.lcokup().

lindVarnanale(Soint.oless, .x.,
int.class),

) catch (ReflectiveOperaticenxcepticon e) (
throw new Prror(e),

Within some Point method. field x can be read, for example in Acquire mode using int . getAcquire(this).
For more details, see the API documentation and JEP 193. Because most VarHandlc methods arc declared in terms
of vararg-style Objects. missing or wrong arguments arc not caught at compilc time. and results may require
useless-looking casts. As a matter of good practice. all fields intended to bc accessed concurrently should bc
declared as conic in. which provides the least surprising defaults when they arc accessed directly without
VarHandles. This cannot bc expressed whcn using VarHandlcs with array elements. so the array declarations should
be manually documented that they support concurrent access.

Also. JDK 9 versions of java.util.concunentatomic classes include methods corresponding to Mese VarHandlc
constnictions. applied to the single elements or arrays held by the associated Atomic objects.

A planned follow-up will present more detailed examples of VarHandle usages and further coding guidelines.

Background

Back in the earliest days of concurrent programming (predating Java). computers wcrc much simpler dcviccs.
Uniprocessors single-stepped through instructions accessing memory cclls. and emulated concurrency by context-
switching across threads. Whilc many of thc pioneering ideas about coordination and interference in concurtent
programming established during this cra still hold. othcrs tum out to be ill-matched for systems cmploying three
fonns of parallelism that have since emerged:

I. Task parallelism. Under uniprocessor emulation. if two threads execute basic actions A and B respectivcly.
then either A prcccdes B or B procedes A. But with multiple cores. A and B may bc unordered -- neither
precedes the other.

2. Mcmory parallelism. When memory is managed by multiple parallcl agents (especially including caches).
then vmiables nccd not be directly represented by any single physical device. So the notion of a variable is a

•

Introduction

Informal Specification

PW-fnrm SnAnifin

Architecture assumptions

• • < > Nor Secure — 9eccs.oswego.edu/d11111./j9mm htn, I

Using JDK 9 Memory Order Modes

by Etug

Last update: Fri Nov 16 08:46,48 2018 Doug Lea

Introduction

This guide is mainly intended for expert programmers familiar with Java concurroncy, but unfamiliar with the
memory order modcs available in JDK 9 provided by VarHandles. Mostly. it focuses on how to think about modes
when developing parallel software. Feel free to filar read thc Summary.

To get thc shockingly ugly syntactic details ovcr with: A VarHandlc can bc associated with any field. array clement,
or static, allowing control over access modes. VarHandles should be declared as static final fields and explicitly
initialized in static blocks. By convention. we givc VarHandles for fields names that arc uppercase versions of the
field names. For example, in a Point class:

import java.lang.invoke.nethodnandles,
import java.lang.invoka.Varnandle;
class Point (

volatile int x,
private static final Varnandle X;
static (
tcy
I . Metnednandles.lcokup().

lindVarnandle(Solet.class, .x.,
int.class),

) catch (RetlectiveOperaticoinception e) (
throw new Mrror(e),

Within some Point method. field x can be read, for example in Acquire mode using int . gatneau re nia .
For morc details, see the API documentation and JEP 193. Because most VarHandle methods arc declared in terms
of varam-style Objects. missing or wrong arguments arc not caught at compile time. and results may require
useless-looking casts. As a matter of good practice. all fields intcndcd to bc accessed concurrently should bc
declared as voiat it.. which provides the least surprising defaults when they arc accessed directly without
VarHandles. This cannot bo expressed whco using VarHandles with array elements. so the array declarations should
be manually documented that they support concurrent access.

Also. JDK 9 versions of java.util.concunentatomic classes include methods conesponding to these VarHandle
constnictions. applied to the single elements or arrays held by the associated Atomic objects.

A planned follow-up will present more detailed examples of VarHandlc usages and funher coding guidelines.

Background

Back in the earliest days of concurrent programming (predating Java). computers wore much simpler devices.
Uniprocessors single-stepped through instructions accessing memory cclls. and emulated concurroncy by context-
switching across threads. Whilc many of thc pioneering ideas about coordination and interference in concunent
prograrnroing established during this cra still hold. others tum out to be ill-matched for systems employing three
fonns of parallelism that have since emerged:

I. Task parallelism. Under uniprocessor emulation. if two threads execute basic actions A and B rcspcctivcly.
then either A prcccdes B or B procedes A. But with multiple cores. A and B may be unordered -- neither
precedes the other.

2. Mcmory parallelism. When memory is managed by multiple parallel agents (especially including cachcs).
then vmiables nccd not be directly represented by any single physical device. So the notion of a variable is a

•

Introduction

Informal Specification

Platform Soecific
Architecture assumptions

incorrect
Undersynchronized

• • <)

Using JDK 9 Memory Order Modes

by Dirg

Last update: Fri Nov 16 08:46:48 2018 Doug Lea

Introduction

This guide is mainly intended for expert programmers familiar with Java concurrency, but unfamiliar with the
tnemory order modcs availablc in JDK 9 provided by VarHandlcs. Mostly. it focuses on how to think about modcs
when developing parallel software. Feel free to first read thc Summary.

To get thc shockingly ugly syntactic details over with: A VarHandlc can bc associated with any field. =ay clement,
or static, allowing control over access modcs. VarHandles should be declared as static final fields and explicitly
initialized in static blocks. By convention. we give VarHandles for fields names that arc uppercase versions of the
field namcs. For example, in a Point class:

import java.lang.invoke.nethodnandlen;
import java.lang.invoka.Varnendle;
class point (

volitile int x,
private static final Varnandla X;
xtxtla (
tcy I
I . Metbodnandles.lcokup().

findVarnandle(Solat.olass, .x.,
int.class),

) catch (ReflectiveOperaticoixception e) (
throw new arror(e),

Within some Point method. ficld x can be mad, for example in Acquire mode using int v . get/kegs re(thia .
For morc details, sec the API documentation and JEP 193. Because most VarHandlc methods arc declared in terms
of vararg-style Objects. missing or wrong arguments arc not caught at compilc time. and results may require
useless-looking casts. As a matter of good practice. all fields intcndcd to bc accessed concurrently should bc
declared as voiat it.. which provides the least surprising defaults when they arc accessed directly without
VarHandlcs. This cannot be expressed when using VarHandles with array elements. so the array declarations should
be manually documented that they support concurrent access.

Also. JDK 9 versions of java.util.concunentatomic classcs include methods corresponding to these VarHandlc
constnictions. applied to the single elements or arrays held by the associated Atomic objects.

A planned follow-up will present mom detailed examples of VarHandle usages and further coding guidelines.

Background

Back in dm earliest days of concurrent programming (predating Java). computcrs were much simpler devices.
Uniprocessors single-stepped through instructions accessing memory cclls. and emulated concumency by context-
switching across threads. Whilc many of thc pioneering idcas about coordination and interference in concunent
programming established during this cra still hold. others tum out to bc ill-matched for systems cmploying three
fonns of parallelism that have since emerged

I. Task parallelism. Undcr uniprocessor emulation. if two threads execute basic actions A and B respectively.
then either A precedes B or B pmcedes A. But with multiple cores. A and B may be unordered -- neither
precedes the other.

2. Memory parallclism. When memory is managed by multiple parallel agents (cspccially including caches).
then variables nccd not bc directly represented by any single physical device. So the notion of a variable is a

•

Introduction

Informal Specification

Platform Soecific
Architecture assumptions

incorrect
Undersynchronized

Slow
Oversynchronized

• • <)

Using JDK 9 Memory Order Modes

by Ettig

Last update, Fri Nov 16 08,46,48 2018 Doug Lea

Introduction

This guide is mainly intended for expert programmers familiar with Java concurrency, but unfamiliar with the
tnemory order modcs availablc in JDK 9 provided by VarHandles. Mostly. it focuses on how to think about modcs
when developing parallel software. Feel free to first read thc Summary.

To get thc shockingly ugly syntactic details ovcr with: A VarHandlc can bc associated with any field. =ay clement,
or static, allowing control over access modcs. VarHandles should be declared as static final fields and explicitly
inifialized in static blocks. By convention. we give VarHandles for fields names that arc uppercase versions of the
field namcs. For example, in a Point class:

import java.lsno.invoke.nethodnandles;
import java.lang.invoka.Varnandle;
class Point (

volatile int x,
private static final Varnandle X;
static (
tcy I
x Metnednandles.lcokup().

lindVarnandle(Solat.olass, .x.,
int.class),

) catch (ReflectiveOperaticoixception e) (
throw new Mrror(e),

Within some Point method. ficld x can be read, for example in Acquire mode using int v . get/kegs re(chi. .
For more details, sec the API documentation and JEP 193. Because most VarHandle methods arc declared in terms
of vararg-style Objects. missing or wrong arguments arc not caught at compilc time. and results may require
useless-looking casts. As a matter of good practice. all fields intcndcd to bc accessed concurrently should bc
declared as volat ;la. which provides the least surprising defaults when they arc accessed directly without
VarHandlcs. This cannot be expressed when using VarHandles with array elements. so the array declarations should
be manually documented that they support concurrent access.

Also. JDK 9 versions of java.util.concunentatomic classcs include methods corresponding to these VarHandlc
constnictions. applied to the single elements or arrays held by the associated Atomic objects.

A planned follow-up will present more detailed examples of VarHandle usages and further coding guidelines.

Background

Back in the earliest days of concurrent programming (predating Java). computcrs wcm much simpler devices.
Uniprocessors single-stepped through instructions accessing memory cclls. and emulated concunency by context-
switching across threads. Whilc many of thc pioneering ideas about coordination and interference in concunent
programming established during this cra still hold. others tum out to bc ill-matched for systems cmploying three
fonns of parallelism that have since emerged:

I. Task parallelism. Undcr uniprocessor emulation. if two threads execute basic actions A and B respcctivcly.
then either A precedes B or B on:cedes A. But with multiple cores. A and B may be unordered -- neither
precedes the other.

2. Memory parallelism. When memory is managed by multiple parallel agents (especially including caches).
then variables nccd not bc directly represented by any single physical device. So the notion of a variable is a

•

Introduction

Informal Specification

Platform Soenific
Architecture assumptions

incorrect
Undersynchronized

Slow
Oversynchronized

• • •

let sw = [(REL I ACQ_REL I SC)];

([F]; sb)?; rs; rf;

[R & (RLX I REL I ACQ I ACQ_REL I SC)];

(sb; [F])?;

[(ACQ I ACQ_REL I SC)]

• • •

Introduction

Informal Specification

Platform Soenific
Architecture assumptions

incorrect
Undersynchronized

Slow
Oversynchronized

• • •

let sw = L AC 1 SC)];

([F]; sb)?

[R & (RLX 1 1 ACQ 1 ACQ_REL 1 SC)];

(sb; [F])?'

[(ACQ 1 REL

• • •

Introduction

What is a memory model for?

Introduction

What values can a read see?

Introduction

vl . What values can a read see?

Sequential Consistency

threadO!

write 1 to

write 1 to

threadl:

read x

read y

Sequential Consistency

threadO!

write 1 to

write 1 to

threadl:

read x

read y

!„:
Hs 1,1 191011

Hitu 4111111 41:44;7 ""==== --i77771,7
, .,„ .110 111 .1.10110i iRf

Sequential Consistency

threadO!

write 1 to

write 1 to

threadl:

read x

read y

!„:
Hs 1,1 191011

Hitu 4111111 41:44;7 ""==== --i77771,7
, .,„ .110 111 .1.10110i iRf

Sequential Consistency

threadO• threadl:

write 1 to read

write 1 to read y

IN1 141
OS I/H 191 INI
"

!... Htui 101 /HI
It • tH .14.1=1. 9LLvairea,

-
ilq . ouu uNql.,

Sequential Consistency

threadO!

write 1 to

write 1 to

threadl:

read x

read y

[..t.,,r,.:.,,,,...,.....14.: 11==.-,........._

n11,-"In...
==,..,

#241:::=.3...01: — 1.==== ,;;,,,,,,,,-.-.... .r...==.1

6_4..........._____.- 1111 .4 -...
. , „

pyr„ ,-., :le: : ' me , , - im , -... , um , e

Sequential Consistency

threadO:

► write 1 to y
write 1 to

x

y 1
ell M.
HI oiii 1111

—
_

141 " "
:4;

threadl:

read x

read y

Sequential Consistency

threadO:

write 1 to y

► write 1 to

threadl:

read x

read y

Sequential Consistency

threadO:

write 1 to y

► write 1 to

threadl:

► read
read y

Sequential Consistency

threadO:

write 1 to y

► write 1 to

threadl:

read x // 1

► read y // 1

Sequential Consistency

threadO:

write 1 to y

► write 1 to x

threadl:

read x // 1

► read y // 1

vl . What values can a read see?

x

41;;-the, -
r r

Sequential Consistency

threadO: threadl:

write 1 to y read

write 1 to read y

Sequential Consistency

thread0• threadl:

write 1 to read

write 1 to read y

1. Linear order of execution

Sequential Consistency

thread0• threadl:

write 1 to read

write 1 to read y

1. Linear order of execution
2. Program order consistent

Sequential Consistency

thread0• threadl:

write 1 to read

write 1 to read y

1. Linear order of execution
2. Program order consistent
3. Reads from last write

Sequential Consistency

threadO:

write 1 to

write 1 to

threadl:

read x // 1

read y // ??

1. Linear order of execution
2. Program order consistent
3. Reads from last write

Sequential Consistency

threadO:

write 1 to

write 1 to

threadl:

read x // 1

read y // ??

1. Linear order of execution
2. Program order consistent
3. Reads from last write

Sequential Consistency

threadO:

write 1 to

write 1 to 1
threadl:

!read x // 1

4read y // ??

1. Linear order of execution
► 2. Program order consistent

3. Reads from last write

Sequential Consistency

threadO:

write 1 to

write 1 to 1
threadl:

rf __Iread x // 1
-------4read y // ??

► 1. Linear order of execution
2. Program order consistent
3. Reads from last write

Sequential Consistency

threadO:

write 1 to

write 1 to

threadl:

read x // 1

read y // ??

► 1. Linear order of execution
2. Program order consistent
3. Reads from last write

Sequential Consistency

threadO:

write 1 to

write 1 to

threadl:

read x // 1

read y // 1

1. Linear order of execution
2. Program order consistent

► 3. Reads from last write

Sequential Consistency

threadO:

write 1 to

write 1 to

threadl:

read x // 1

read y // 1

vl . What values can a read see?

Sequential Consistency

threadO:

write 1 to

write 1 to

threadl:

read x // 1

read y // 1

v2. Which write is paired with a read?

Sequential Consistency

threadO:

write 1 to

write 1 to

threadl:

read x // 1

read y // 1

v2. Which writP is paired with a read?

Sequential Consistency

threadO:

write 1 to

write 1 to

write 0 to y

threadl:

read x // 1

read y // 1

v2. Which writP is paired with a read?

Write elimination
init:

write 0 to y

threadO:

write 1 to y

write 1 to

threadl:

read x

read y // ??

Write elimination
init:

write 0 to y
•
•
•
k rf

threadO:
•
• threadl:

write 1 to y
x
x read x
A

write 1 to read y // 0

Write elimination

write 0 to y

•
• rf

threadO!
•
• threadl:
•

write 1 to - _ rf • read x
... ... A... ...

write 1 to ---.' read y // 0 o r 1

Write elimination
init:

write 0 to y

threadO: threadl:

write 1 to y I i read x // 1

write 1 to 4' +read y // 0 or 1

Write elimination
init:

write 0 to y

threadO:

write 1 to y

write 1 to

threadl:

read x // 1

read y // 0 or 1

Write elimination
init:

write 0 to y
•
•
•
• rf

threadO:
•
• threadl:

write 1 to y
•
• read x // 1

-V
write 1 to read y // 0 or 1

Write elimination
init:

write 0 to y

/ ‘x
.

x rf

threadO:
x
x threadl:

write 1 to y
•
• read x // 1

-V
write 1 to read y // 0 or 1

Write elimination
init:

write 0 to y

/ ‘x
.

x rf

threadO:
x
x threadl:

write 1 to y
•
• read x // 1

-V
write 1 to read y // 0 or 1

1. Linear order of execution
2. Proaram order rnncistent
3. Reads from Iast write

Write elimination
init:

write 0 to y

/ x•

thread() :

write 1 to y

write 1 to

threadl:
•
• read x // 1

-V
read y // 0 or 1

1. Linear order of execution
2. Proaram order rnncistent
3. Reads from Iast write

Write elimination
init:

write 0 to y

/ ‘.

threadO: threadl:

write 1 to y -___rf
•
• read x // 1

-4i
write 1 to

_
- -*- read y // 1

1. Linear order of execution
2. Proaram order consistent
3. Reads from Iast write

Write elimination
init:

write 0 to y

threadO:

write 1 to y

write 1 to

threadl:

read x // 1

read y // 1

Write elimination

threadO:

write 1 to

write 1 to

write 0 to y

threadl:

read x // 1

read y // 1

v2. Which write is paired with a read?

Write elimination

threadO:

write 1 to

write 1 to

write 0 to y

threadl:

read x // 1

read y // 1

v3. When are access effects visible?

Write elimination

threadO:

write 1 to

write 1 to

write 0 to y

threadl:

read x // 1

read y // 1

v3. When are access effects visible?

to reads?

Write elimination

threadO:

write 1 to

write 1 to

write 0 to y

threadl:

read x // 1

read y // 1

v3. When are access effects visible?

to reads?

Write elimination

thread() !

write 1 to

write 1 to

SC

write 0 to y

threadl:

read x // 1

read y // 1

1. Linear order of execution
2. Program order consistent
3. Reads trom Iast write

Sequential Inconsistency

write () to y

threadO: threadl:

write 1 to read

write 1 to read

====

Sequential Inconsistency

write () to y

threadO: threadl:

write 1 to read

write 1 to read

====

Sequential Inconsistency

write () to y

threadO: threadl:

write 1 to read

I write 1 to read

====

Sequential Inconsistency
init:

write 0 to y

threadO:

t write 1 to

write 1 to

1. Linear order of execution
2. Program order consistent
3. Reads from last write

threadl:

read x // 1

read y // ??

Sequential Inconsistency

1. Linear order of execution
0.1 VS .1-

L. I 1 VIJ. 1 QI I I VI LAGI L—AJI IJIJLGI IL

3. Reads from last write

init:

write 0 to y

threadO:

I
write 1 to

write 1 to y

threadl:

read x // 1

read y // ??

/00 'AM RIM • L.
WI 101 #11111411

r̂7777V.11:t7i71"Ffri,wt at rai tmi #1 lof
• .1•11 NI MI 11111111 1.1101 oi lof _ 1'1

Sequential Inconsistency
init:

write 0 to y

thread() :

write 1 to

write 1 to y

threadl:

read x // 1

read y // ??

1. Linear order of execution
....,110,4 •••••••• A A I .11, 1,1,1 ; 1,4 0,1,64

. I I V I LA III VI Li %.... I l.-• VI IJIJ IA, I I I.

3. Reads from last write

Sequential Inconsistency
init:

write 0 to y

thread() :

write 1 to x

write 1 to y

rf
threadl:

> read x // 1

 >read y // ??

1. Linear order of execution
....,110,4 •••••••• A A I .11, 1,1,1 ; 1,4 0,1,64

. I I V I LA III VI Li %.... I l.-• VI IJIJ IA, I I I.

3. Reads from last write

Sequential Inconsistency
init:

write 0 to y
•
•

threadO:

write 1 to

write 1 to y

•
• rf
•

threadl:
•

read x // 1

 > read y // 0 or 1

1. Linear order of execution
ds ',I...A

L. I I ‘.../1 CII I I VI LIGI

3. Reads from last write

Sequential Inconsistency
init:

write 0 to y

threadO:

write 1 to y

write 1 to

threadl:

read x

read y // ??

1. Lincar ordcr of cxccution
2. Program ordcr consistcnt
3. Reads from last write

Sequential Inconsistency
init:

write 0 to y

threadO:

write 1 to y

write 1 to

threadl:

read x // 1

read y // ??

1. Lincar ordcr of cxccution
2. Program ordcr consistcnt
3. Reads from last write

Sequential Inconsistency
init:

write 0 to y

threadO: threadl:

write

write

1

1

to yt

to x
_

r-

-
-

read x //

read y //

1

??

1. Lincar ordcr of cxccution
2. Program ordcr consistcnt
3. Reads from last write

Sequential Inconsistency
init:

write 0 to y

threadO: threadl:

write 1 to y read x // 1

write 1 to read y // ??

1. Lincar ordcr of cxccution
2. Program ordcr consistcnt
3. Reads from last write

Sequential Inconsistency
init:

write 0 to y

threadO: threadl:

write 1 to y ? read x // 1

write 1 to x read y // ??

v3. When are access effects visible?

1. Lincar ordcr of cxccution
2. Program ordcr consistcnt
3. Reads from last write

Sequential Inconsistency
init:

write 0 to y

threadO: threadl:

write 1 to y vo read x // 1

write 1 to x read y // ??

1. Linear order of execution
2. Program order consistent
3. Reads from last write

Visibility
init:

write 0 to y

threadO:

write 1 to y

write 1 to

threadl:

read x

read y

Visibility

write 0 to y

threadO! threadl:

write 1 to read x

write 1 to read y

1 . Reads

Visibility

write 0 to y

threadO! threadl:

write 1 to read x

write 1 to read y

1 . Reads

Visibility

write 0 to y

threadO!

write 1 to y

write 1 to

threadl:

vo read x

read y

1. Reads
2. Initial writes

Visibility

write 0 to y

vo

threadO:

write 1 to y

write 1 to x

write 2 to -

1. Reads
2. Initial writes

threadl:

read x

read y

Visibility

write 0 to y

threadO:

write 1 to y

write 1 to

write 2 to

1. Reads
2. Initial writes

threadl:

read

read

Visibility

threadO:

write 0 to y

write

write

write

1 to y

1 to x

2 to x
vo

v

threadl:

read x

read y

1. Reads
2. Initial writes
3. Same location

Visibility

write 0 to y

threadO:

write

write

write

1 to y

1 to x

2 to x
vo

vo

threadl:

read x

read y

1. Reads
2. Initial writes
3. Same location

Visibility

write 0 to y

threadO:

write

write

write

1 to y

1 to x

2 to x
vo

vo
svo

threadl:

read x

read y

1. Reads
2. Initial writes
3. Same location

Visibility

write 0 to y

threadO:

write 1 to y vo

write

write

1 to x

2 to x
vo

vo

threadl:

read x

read y

1. Reads
2. Initial writes
3. Same location
4. Specified

Visibility

write 0 to y

vo

threadO: threadl:

write 1 to y vo read x

write 1 to x

write 2 to x
vo

vo read /

1. Reads
2. Initial writes
3. Same location
4. Specified

1

r

Visibility
init:

write 0 to y

threadO:

write 1 to y

write 1 to

threadl:

read x // 1

read y // 0 or 1

Visibility
init:

write 0 to y

threadO:

write 1 to y

write 1 to

threadl:

read x // 1

read y // 0 or 1

Visibility
init:

write 0 to y

vo

threadO:

write 1 to y

write 1 to --

r r

threadl:

read x // 1

read y // 0 or 1

Visibility
init:

write 0 to y

threadO:

write 1 to y

write 1 to

threadl:

vo read x // 1

read y // 0 or 1

Visibility
init:

write 0 to y

vo

threadO: threadl:

write 1 to y- vo read x // 1

write 1 to read y // 0 or 1

Visibility
init:

write 0 to y

threadO:

write 1 to y

write 1 to x
svo

vo
svo

threadl:

read x // 1

read y // 0 or 1

Visibility
init:

write 0 to y

threadO:

write 1 to y

write 1 to x
vo

threadl:

vo read x // 1
vo read y // 0 or 1

Visibility
init:

write 0 to y

threadO:

write 1 to y

write 1 to

threadl:

vo read x // 1

read y // 0 or 1

Visibility
init:

write () to y
•
•

vo •
k a

threadO:
•
• threadl:

write 1 to y vo
•
• read x // 1

41
write 1 to read y // 0 or 1

Visibility

init:

write 0 to y
•
•
•
k

threadO• ♦ threadl:

write 1 to
•

y vo • read x // 1

write 1 to read y // 0 or 1

ni t :

write 0 to y

threadO:

write 1 to y

write 1 to

VO

\rf
threadl:

read x // 1

read y // or 1

Visibility
init:

write 0 to y
•
•

vo

threadO: threadl:

write 1 to y vo
•
• read x // 1

-4i
write 1 to read y // 0 or 1

Visibility
init:

write 0 to y
•
•

vo

threadO: threadl:

write 1 to y ___rf
•
• read x // 1

-
write 1 to ---.)-

-4i
read y // 1

OOPSLA'19

VarHandle API

OOPSLA'19

VarHandle API read y

write 1 to y

OOPSLA'19

VarHandle API

Plain
Minimal guarantees

read y

write 1 to y

a = y;

y = 1;

OOPSLA'19

VarHandle API

Plain
Minimal guarantees

Opaque
Acyclic causality

read y

write 1 to y

a = y;

y = 1;

Y.getOpaque();

Y.setOpaque(1);

OOPSLA'19

VarHandle API

Plain
Minimal guarantees

Opaque
Acyclic causality

Release-acquire
Message passing

read y

write 1 to y

a = y;

y = 1;

Y.getOpaque();

Y.setOpaque(1);

Y.getAcquire();

Y.setRelease(1);

OOPSLA'19

VarHandle API

Plain
Minimal guarantees

Opaque
Acyclic causality

Release-acquire
Message passing

\/nlatilp

SC semantics, volati le variables

read y

write 1 to y

a = y;

y = 1;

Y.getOpaque();

Y.setOpaque(1);

Y.getAcquire();

Y.setRelease(1);

Y.getVolatile();

Y.setVolatile(1);

OOPSLA'19

VarHandle API

Plain
Minimal guarantees

Opaque
Acyclic causality

Release-acquire
Message passing

\/nlatilp

SC semantics, volati le variables

read y

write 1 to y

a = y;

y = 1;

Y.getOpaque();

Y.setOpaque(1);

Y.getAcquire();

Y.setRelease(1);

Y.getVolatile();
\.,/ Y.setVolatile(1);

OOPSLA'19

VarHandle API

Plain
Minimal guarantees

Opaque
Acyclic causality

Release-acquire
Message passing

\ /nlati lp

1

SC semantics, volati le variables \/

plain E opaque E release-acquire E volatile

Model

OOPSLA '1 9
A Formalization of Java's Concurrent Access Modes

A N 0 NY MOU A UTHO R(S)

Java's memory model was recently updated and expanded with new access modes. The accompanymg
documentation for these access modes is intended to make strong guarantees about program behavior that the
Java compiler must enforce, yet Ihe documentation is frequently unclear. This makes the intended program
behavior ambiguous, impedes discussion of key design decisions, and makes it impossible to prove general
properlies about the semantics of the access modes.

10
In this paper we present the first formalization of Java's access modes. We have constructed an axiomatic

model for all of the modes using the Herd modeling tool. This allows us to give precise answers to queslions
ti

aboul the behavior of example programs, called litmus tesls. We have validated our model using a large suite
of litmus tests from existing research which helps to shed light on the relationship wilh other memory models.

" We have also modeled the semantics in Coq and proven several general theorems including a DRF guarantee.
" which says thal if a program is properly synchronized then it will exhibit sequentially consistent behavior.
‘s Finally, we use our model to prove that the unusual design choice of a partial order among writes to the same
La location is unobservable in any program.

17

1 INTRODUCTION
is
0

The original Java memory model [Manson et al. 2005] included an early attempt to define the
semantics of lock-free shared memory programs running on the Java platform, but the definitions

1, were hard to understand and there was no easy way to check the behavior of example programs.
It was also later discovered that it ruled out existing compiler optimizations which it claimed to
support [Sevtik and Aspinall 2008]. Since then, researchers have made great advances in memory

s model design while studying other weak memory models like those for ARM [Alglave et al. 2008;

26
Pulte et al. 2017], C11 [Batty et al. 2011; Kang et al. 2017; Lahav et al. 2017; Vafeiadis et al. 2015],

1, Power [Alglave et al. 2014], and x86 [Owens et al. 2009].

8
Recently, the ninth version of the Java Development Kit updated and expanded Java's memory

29
model using new 'access modes". Though the design of the access modes is inspired by CI l's

0
memory orders [Committee et al. 2010], it differs in a few key ways. First, it sheds complicated
legacy features like release sequences and release-consume accesses. Second, it includes a broad
but simple mechanism to forbid so called "out of thin-air" behavior [Batty and Sewell 2014]. Finally,
it makes no provision for a total order on writes to the same location. Taken together this suggests

15

4
new opportunities to use a simpler model, develop metatheory, and verify lock-free algorithms for
the Java platform.

16
However, the documentation [JDK9 2017; Lea 2017, 2018] is frequently ambiguous. This makes it

extremely difficult to provide definitive answers about program behavior and there is little hope

8
of proving important properties about the semantics. Further, it impedes the discussion of key

o features of the model's design.
Tn address these irmses we nresent the firat fnrmaliratinn nf laya'a access rrityles Critically

Model

OOPSLA '1 9

Java Access Modes (JAM) Model
Instantiations in Herd[1] and Coq

1. Alglave et al. 2014

A Formalization of Java's Concurrent Access Modes

A N 0 NY MOU A UTHO R(S)

Java's memory model was recently updated and expanded with new access modes. The accompanymg
documentation for these access modes is intended to make strong guarantees about program behavior that the
Java compiler must enforce, yet Ihe documentation is frequently unclear. This makes the intended program
behavior ambiguous, impedes discussion of key design decisions, and makes it impossible to prove general
properlies about the semantics of the access modes.

10
In this paper we present the first formalization of Java's access modes. We have constructed an axiomatic

model for all of the modes using the Herd modeling tool. This allows us to give precise answers to queslions
11

aboul the behavior of example programs, called litmus tesls. We have validated our model using a large suite
12 of litmus tests from existing research which helps to shed light on the relationship wilh other memory models.
" We have also modeled the semantics in Coq and proven several general theorems including a DRF guarantee.
1, which says thal if a program is properly synchronized then it will exhibit sequentially consistent behavior.
‘s Finally, we use our model to prove that the unusual design choice of a partial order among writes to the same
La location is unobservable in any program.

Ls 1 INTRODUCTION
is
0

The original Java memory model [Manson et al. 2005] included an early attempt to define the
semantics of lock-free shared memory programs running on the Java platform, but the definitions

22
were hard to understand and there was no easy way to check the behavior of example programs.
It was also later discovered that it ruled out existing compiler optimizations which it claimed to
support [Sevtik and Aspinall 2008]. Since then, researchers have made great advances in memory

s model design while studying other weak memory models like those for ARM [Alglave et al. 2008;

26
Pulte et al. 2017], C11 [Batty et al. 2011; Kang et al. 2017; Lahav et al. 2017; Vafeiadis et al. 2015],

27
Power [Alglave et al. 2014], and x86 [Owens et al. 2009].

8
Recently, the ninth version of the Java Development Kit updated and expanded Java's memory

29
model using new 'access modes". Though the design of the access modes is inspired by CI I's

0
memory orders [Committee et al. 2010], it differs in a few key ways. First, it sheds complicated
legacy features like release sequences and release-consume accesses. Second, it includes a broad

2
but simple mechanism to forbid so called ''out of thin-air" behavior [Batty and Sewell 2014]. Finally,
it makes no provision for a total order on writes to the same location. Taken together this suggests
new oppot hunt,. 11/ 11,11 .1 S11111/1111 1110liti, 1.11/1/ 1111'1,011CM V. .11111 srrifc lock-Free alf.forttlIttea for

the lava platform
llowever. the flot ttmentallon [II /Ix, . 1 ea I .'i -1 is I reimetttls anti)] gum, This

cctrcmcic tillikitlt to hrucidc dcfinilivc answcr.. about ptomain ham ior foul tittle is little llOpe

s of proving important properties about the semantics. Further, it impedes the discussion of key
3,, features of the model's design.

Tn address these issues we nresent the first formalization of lava's access modes Critically

Model

OOPSLA '1 9

Java Access Modes (JAM) Model
Instantiations in Herd[1] and Coq

Litmus Test Suite
80+ example programs

1. Alglave et al. 2014

A Formalization of Java's Concurrent Access Modes

A N 0 NY MOU S A UTNOR(S)

Java's memory model was recently updated and expanded with new access modes. The accompanying
documentation for these access modes is intended to make strong guarantees about program behavior that the
Java compiler must enforce, yet Ihe documentation is frequently unclear. This makes the intended program
behavior ambiguous, impedes discussion of key design decisions, and makes it impossible to prove general
properlies about the semantics of the access modes.

io ln this paper we present the first formalization of Java's access modes. We have constructed an axiomatic
model for all of the modes using the Herd modeling tool. This allows us to give precise answers to queslions
aboul the behavior of example programs, called litmus tesls. We have validated our model using a large suite

12 of litmus tests from existing research which helps to shed light on the relationship wilh other memory models.
" We have also modeled the semantics in Coq and proven several general theorems including a DRF guarantee.
11 which says thal if a program is properly synchronized then it will exhibit sequentially consistent behavior.
is Finally, we use our model to prove that the unusual design choice of a partial order among writes to the same
16 location is unobservable in any program.

17

‘8 1 INTRODUCTION
is

20
The original Java memory model [Manson et al. 2005] included an early attempt to define the
semantics of lock-free shared memory programs running on the Java platform, but the definitions
were hard to understand and there was no easy way to check the behavior of example programs.

23
It was also later discovered that it ruled out existing compiler optimizations which it claimed to

21
support [Sevtik and Aspinall 2008]. Since then, researchers have made great advances in memory

25
model design while studying other weak memory models like those for ARM [Alglave et al. 2008;
Pulte et al. 2017], C11 [Batty et al. 2011; Kang et al. 2017; I.ahav et al. 2017; Vafeiadis et al. 2015],
Power [Alglave et al. 2014], and x86 [Owens et al. 2009]..r7

Recently, the ninth version of the Java Development Kit updated and expanded Java's memory

9
model using new 'access modes". Though the design of the access modes is inspired by CI l's

2

0
memory orders [Committee et al. 2010], it differs in a few key ways. First, it sheds complicated

4

legacy features like release sequences and release-consume accesses. Second, it includes a broad

2
but simple mechanism to forbid so called ''out of thin-air" behavior [Batty and Sewell 2014]. Finally,

1
it makes no provision for a total order on writes to the same location. Taken together this suggests
11cW o11110111111111cs lo 115c a snuffler model. 111•S ntetatheory, and »et fly lock-Free algorithms Mt

the Java platform
llowever, the tlocutnetitat ton [II fl,'? . 1 ,..1 .!' I ..!i : is Irequentl funlmfttom Tins makes it

extlentely dIllictilt to provIde fletifultve attswcrs about ptomain hch:vior and 1113.131 13.11111e 1101131

A
of proving important properties about the semantics. Further, it impedes the discussion of key

3, features of the model's design.
Tn address these iSsiles we nresent the first fnrmalizatinn of laya's access modes_ Critically_

Model

OOPSLA '1 9

Java Access Modes (JAM) Model
Instantiations in Herd[1] and Coq

Litmus Test Suite
80+ example programs

Theorems
3 main theorems, unobservability

1. Alglave et al. 2014

A Formalization of Java's Concurrent Access Modes

A N 0 NY MOU S A UTNOR(S)

Java's memory model was recently updated and expanded with new access modes. The accompanying
6 documentation for these access modes is intended to make strong guarantees about program behavior that the

Java compiler must enforce, yet Ihe documentation is frequently unclear. This makes the intended program
behavior ambiguous, impedes discussion of key design decisions, and makes it impossible to prove general
properlies about the semantics of the access modes.

ln this paper we present the first formalization of Java's access modes. We have constructed an axiomatic
model for all of the modes using the Herd modeling tool. This allows us to give precise answers to queslions
aboul the behavior of example programs, called litmus tesls. We have validated our model using a large suite
of litmus tests from existing research which helps to shed light on the relationship wilh other memory models.
We have also modeled the semantics in Coq and proven several general theorems including a DRF guarantee.
which says thal if a program is properly synchronized then it will exhibit sequentially consistent behavior.
Finally, we use our model to prove that the unusual design choice of a partial order among writes to the same
location is unobservable in any program.

10

12

13

14

14

16

17

18

19

20

21

zz
23

25

26

27

28

29

10

st
12

11

1 INTRODUCTION

The original Java memory model [Manson et al. 2005] included an early attempt to define the
semantics of lock-free shared memory programs running on the Java platform, but the definitions
were hard to understand and there was no easy way to check the behavior of example programs.
It was also later discovered that it ruled out existing compiler optimizations which it claimed to
support [Sevtik and Aspinall 2008]. Since then, researchers have made great advances in memory
model design while studying other weak memory models like those for ARM [Alglave et al. 2008;
Pulte et al. 2017], C11 [Batty et al. 2011; Kang et al. 2017; Lahav et al. 2017; Vafeiadis et al. 2015],
Power [Alglave et al. 2014], and x86 [Owens et al. 2009].

Recently, the ninth version of the Java Development Kit updated and expanded Java's memory
model using new 'access modes". Though the design of the access modes is inspired by CIrs
memory orders [Committee et al. 2010], it differs in a few key ways. First, it sheds complicated
legacy features like release sequences and release-consume accesses. Second, it includes a broad
but simple mechanism to forbid so called ''out of thiri-air" behavior [Batty and Sewell 2014]. Finally,
it makes no provision for a total order on writes to the same location. Taken together this suggests

1,, llsc a simplyr fliodcl, tick clop fm•tatlicif foul algorttluns for
the lava platform

lowcycr, tbc dm if mmtat on [II flx, . I ,..1 .'i : is I rcquentls amblguom This
to hrucidc dcfinilivc answcr.. about ptomain lichas ior am! time IN little !lope

s of proving important properties about the semantics. Further, it impedes the discussion of key
39 features of the model's design.

Tn address these issues we nresent the first formalization of laya's arress modes Critically

OOPSLA' 1 9

Validation

OOPSLA'19

Validation

Empirical Validation
Testing specified expectations of the JAM

SC
OOPSLA' 1 9

Validation

Empirical Validation
Testing specified expectations of the JAM

+total co

► JAM

+W-R
+MCA

ARMv8

A-1\N N
ARMv7 Power

x
z,

/

Language

+release seq.
+release-cons.
+total co

RMC

OOPSLA'19

Validation

Empirical Validation
Testing specified expectations of the JAM

Theoretical Validation
Metatheorems required by the specification

OOPSLA'19

Validation

Empirical Validation
Testing specified expectations of the JAM

Theoretical Validation
Metatheorems required by the specification

rem acq_causality { H } :
trco H
-> acquire_reads H
-> opaque_accesses H
-> acyclic (union (po H) (rf H)).

Proof.

Qed.

,em drf_sc { H } :
trco H
-> race_free H
-> acyclic (co H)
-> acyclic (sc (po H) H).

Proof.

Qed.

Theorem monotonicity { H1 H2 } :
acyclic (co H1)
-> trco H2
-> match H2 H1
-> fiat_vo H2
-> access_lte_ordered H2 H1
-> acyclic (co H2).

Proof.

Qed.

OOPSLA'19

Validation

JAM vs. x86, ARMv8, C11
JAM should admit more behaviors/executions

SC
OOPSLA'19

Validation
+W-R
+MCA

x86

+W-R

Flardware

JAM vs. x86, ARMv8, C11 ARMv8
JAM should admit more behaviors/executions

+total co

JAM

ARMv7 Power

/ Language

C11

AI +release seq.+release-cons.
+total co

RMC

OOPSLA' 1 9

Validation
+W-R

SC

+W-R
+MCA

x86 4
*

Hardware

JAM vs. x86, ARMv8, C1 1 ARMv8 4
JAM should admit more behaviors/executions

+total co

JAM

A-1\N N
ARMv7 Power

x
z

/

Cll

z

Language

+release seq.
+release-cons.
+total co

RMC

SC
OOPSLA'19

Validation

JAM vs. x86, ARMv8, C11
JAM should admit more behaviors/executions

JAM

+W-R
+MCA

.
ARMv7 Power

%
/

/
/ Language

/

►

/
/

C11

AI +release seq.+release-cons.
+total co

RMC

SC
OOPSLA'19

Validation
+W-R
+MCA

x86

+W-R

Flardware

JAM vs. x86, ARMv8, C11 ARMv8
JAM should admit more behaviors/executions

Herd1 Tool
Explore executions, consult model to validate

1. Alglave et al. 2014

+total co

JAM

ARMv7 Power

/ Language

C11

AI +release seq.+release-cons.
+total co

RMC

SC
OOPSLA'19

Validation
+W-R
+MCA

x86

+W-R

Flardware

JAM vs. x86, ARMv8, C11 ARMv8
JAM should admit more behaviors/executions

Herd1 Tool
Explore executions, consult model to validate

80+ Litmus Tests
Describe "behaviors"

1. Alglave et al. 2014

+total co

JAM

ARMv7 Power

/ Language

C11

AI +release seq.+release-cons.
+total co

RMC

OOPSLA'19

Validation

JAM vs. x86, ARMv8, C11
JAM should admit more behaviors/executions

Herd1 Tool
Explore executions, consult model to validate

80+ Litmus Tests
Describe "behaviors"

1. Alglave et al. 2014

threadO:

y = 1;

x = 1;

threadl:

a = x;

b = y;

OOPSLA'19

Validation

JAM vs. x86, ARMv8, C11
JAM should admit more behaviors/executions

Herd1 Tool
Explore executions, consult model to validate

80+ Litmus Tests
Describe "behaviors"

1. Alglave et al. 2014

threadO: threadl:

y = 1; a _->a = x;

x = 1; ---- b = y;

OOPSLA'19

Validation

JAM vs. x86, ARMv8, C11
JAM should admit more behaviors/executions

Herd1 Tool
Explore executions, consult model to validate

80+ Litmus Tests
Describe "behaviors"

1. Alglave et al. 2014

threadO: threadl:

y = 1; rf___->a = x;

x = 1; ---- b = y; // 0

OOPSLA'19

Validation

JAM vs. x86, ARMv8, C11
JAM should admit more behaviors/executions

Herd1 Tool
Explore executions, consult model to validate

80+ Litmus Tests
Describe "behaviors"

1. Alglave et al. 2014

threadO: threadl:

y = 1; a _->a = x;

x = 1; ---- b = y; // 0

SC ARMv8 i

OOPSLA' 1 9

JAM vs. x86

OOPSLA'19

JAM vs. x86

Expectation: the JAM is weaker
Permits more behaviors/executions

+total co

► JAM

sc

+W-R
+MCA

x86 1
*

+W-R

Hardware

. ARMv8

k\\NCI .
ARMv7 Power

1 ,

/

jv
z

/ / / Language

C11

+release seq.
+release-cons.
+total co

RMC

OOPSLA'l 9

JAM vs. x86

Expectation: the JAM is weaker
Permits more behaviors/executions

x86 JAM Count

Allowed Allowed 16

Not Allowed Allowed 2

Not Allowed Not Allowed 2

Allowed Not Allowed 0

OOPSLA' 1 9

JAM vs. x86

Expectation: the JAM is weaker
Permits more behaviors/executions

Allowed vs. Not Allowed
The behavior is allowed if one execution exists

x86 JAM Count

Allowed Allowed 16

Not Allowed Allowed 2

Not Allowed Not Allowed 2

Allowed Not Allowed 0

OOPSLA' 1 9

JAM vs. x86

Expectation: the JAM is weaker
Permits more behaviors/executions

Allowed vs. Not Allowed
The behavior is allowed if one execution exists

7)-(86 JAM Count

Allowed Allowed 16

Not Allowed Allowed 2

Not Allowed Not Allowed 2

Allowed Not Allowed 0

OOPSLA' 1 9

JAM vs. x86

Expectation: the JAM is weaker
Permits more behaviors/executions

Allowed vs. Not Allowed
The behavior is allowed if one execution exists

x86 JAM Count

Allowed Allowed 16

Not Allowed Allowed 2

Not Allowed Not Allowed 2

Allowed Not Allowed 0

OOPSLA'19

JAM vs. x86

Expectation: the JAM is weaker
Permits more behaviors/executions

Allowed vs. Not Allowed
The behavior is allowed if one execution exists

x86 JAM I Count

Allowed Allowed 16

Not Allowed Allowed 2

Not Allowed Not Allowed 2

Allowed Not Allowed 0

OOPSLA'19

JAM vs. x86

Expectation: the JAM is weaker
Permits more behaviors/executions

Allowed vs. Not Allowed
The behavior is allowed if one execution exists

7)-(86 JAM Count

Allowed Allowed 16

Not Allowed Allowed 2

Not Allowed Not Allowed 2

Allowed Not Allowed 0
L

OOPSLA' 1 9

JAM vs. x86

Expectation: the JAM is weaker
Permits more behaviors/executions

Allowed vs. Not Allowed
The behavior is allowed if one execution exists

x86 JAM Count

Allowed Allowed 16

Not Allowed Allowed 2

Not Allowed Not Allowed 2

I
1- Allowed Not Allowed 0

OOPSLA' 1 9

JAM vs. x86

Expectation: the JAM is weaker
Permits more behaviors/executions

Allowed vs. Not Allowed
The behavior is allowed if one execution exists

x86 JAM Count

Allowed Allowed 16

Not Allowed Allowed 2

Not Allowed Not Allowed 2

r Allowed Not Allowed 0

OOPSLA'19

JAM vs. ARMv8

!JAM

Hardware

ARMv8 4

Power
x

/
.

Language

c11

+release seq.
+release-cons.
+total co

RMC

OOPSLA'19

JAM vs. ARMv8

Expectation: the JAM is weaker

►.J.AM

.
ARMv7 Power

, . ' / Language

z
.

c11

+release seq.
+release-cons.
+total co

RMC

OOPSLA'19

JAM vs. ARMv8

Expectation: the JAM is weaker
Except for causal cycles

►.JAM

k\\NCI .
ARMv7 Power

C11

+release seq.
+release-cons.
+total co

RMC

OOPSLA'19

JAM vs. ARMv8

Expectation: the JAM is weaker
Except for causal cycles

ARMv8 JAM Count

Allowed Allowed 2

Not Allowed Allowed 5

Not Allowed Not Allowed 4

Allowed Not Allowed 1

OOPSLA'19

JAM vs. ARMv8

Expectation: the JAM is weaker
Except for causal cycles

7--
ARMv8 JAM Count

Allowed Allowed 2

Not Allowed Allowed 5

Not Allowed Not Allowed 4

Allowed Not Allowed 1
L

OOPSLA'19

JAM vs. ARMv8

Expectation: the JAM is weaker
Except for causal cycles

ARMv8 JAM Count

Allowed Allowed 2

Not Allowed Allowed 5

Not Allowed Not Allowed 4

I Allowed Not Allowed 1

OOPSLA'19

JAM vs. ARMv8

Expectation: the JAM is weaker
Except for causal cycles

Load Buffering (LB), Causal Cycles
Forbidden explicitly in the JAM

ARMv8 JAM Count

Allowed Allowed 2

Not Allowed Allowed 5

Not Allowed Not Allowed 4

I Allowed Not Allowed 1

OOPSLA'19

JAM vs. ARMv8

Expectation: the JAM is weaker
Except for causal cycles

Load Buffering (LB), Causal Cycles
Forbidden explicitly in the JAM

ARMv8 JAM Count

Allowed Allowed 2

Not Allowed Allowed 5

Not Allowed Not Allowed 4

r Allowed Not Allowed 1

OOPSLA'19

JAM vs. C11

► JAM

Hardware

ARMv8

Power
x

/
.

Language

► C11

+release seq.
+release-cons.
+total co

RMC

OOPSLA'19

JAM vs. C11

Expectation: the JAM is weaker

+total co

►.JAM

sc

+W-R li
+MCA

x86

+W-R

Hardware

*

ARMv8

kl•NCI .
ARMv7 Power

-
z

► C11

/
z
,
. Language

+release seq.
+release-cons.
+total co

RMC

OOPSLA'19

JAM vs. C11

Expectation: the JAM is weaker
Except for causal cycles

►JAM

ARMv8

.
Power
-

z

Language

► C11
+release seq.
+release-cons.
+total co

RMC

OOPSLA'19

JAM vs. 011

Expectation: the JAM is weaker
Except for causal cycles

7C11 JAM Count

Allowed Allowed 12

Not Allowed Allowed 2

Not Allowed Not Allowed 33

Allowed Not Allowed 1

OOPSLA'19

JAM vs. C11

Expectation: the JAM is weaker
Except for causal cycles

JAM Count

Allowed Allowed 12

Not Allowed Allowed 2

Not Allowed Not Allowed 33L

Allowed Not Allowed 1

OOPSLA'19

JAM vs. 011

Expectation: the JAM is weaker
Except for causal cycles

JAM Count

Allowed Allowed 12

Not Allowed Allowed 2

Not Allowed Not Allowed 33

Allowed Not Allowed 1

OOPSLA'19

JAM vs. 011

Expectation: the JAM is weaker
Except for causal cycles

Load Buffering (LB), Causal Cycles
Forbidden explicitly in the JAM

7C11 JAM Count

Allowed Allowed 12

Not Allowed Allowed 2

Not Allowed Not Allowed 33

I Allowed Not Allowed 1

OOPSLA'19

JAM vs. 011

Expectation: the JAM is weaker
Except for causal cycles

Load Buffering (LB), Causal Cycles
Forbidden explicitly in the JAM

7C11 JAM Count

Allowed Allowed 12

Not Allowed Allowed 2

Not Allowed Not Allowed 33

r Allowed Not Allowed 1

OOPSLA'19

Theorems

OOPSLA'19

Theorems

Three main theorems
Further validation of our semantics

1. Ou and Demsky 2018

OOPSLA'19

Theorems

Three main theorems
Further validation of our semantics

• Forbidding causal cycles w/ acquire reads [1]

1. Ou and Demsky 2018

rem acq_causality { H } :
trco H
-> acquire_reads H
-> opaque_accesses H
-> acyclic (union (po H) (rf H)).

Proof.

Qed.

OOPSLA'19

Theorems

Three main theorems
Further validation of our semantics

• Forbidding causal cycles w/ acquire reads [1]

1. Ou and Demsky 2018

OOPSLA'19

Theorems

Three main theorems
Further validation of our semantics

• Forbidding causal cycles w/ acquire reads [1]

1. Ou and Demsky 2018

OOPSLA'19

Theorems

Three main theorems
Further validation of our semantics

• Forbidding causal cycles w/ acquire reads [1]

1. Ou and Demsky 2018

threadO: threadl:

► a = x; 11'...,_ _)-i b = y; 4

y = a;+--- "--4x = b;

OOPSLA'19

Theorems

Three main theorems
Further validation of our semantics

• Forbidding causal cycles w/ acquire reads [1]

1. Ou and Demsky 2018

rem acq_causality { H } :
trco H
-> acquire_reads H
-> opaque_accesses H
-> acyclic (union (po H) (rf H)).

Proof.

Qed.

OOPSLA'19

Theorems

Three main theorems
Further validation of our semantics

• Forbidding causal cycles w/ acquire reads [1]

• SC semantics with proper synchronization

rem acq_causality { H } :
trco H
-> acquire_reads H
-> opaque_accesses H
-> acyclic (union (po H) (rf H)).

Proof.

Qed.

rem drf_sc { H } :
trco H
-> race_free H
-> acyclic (co H)
-> acyclic (sc (po H) H).

Proof.

Qed.

OOPSLA'19

Theorems

Three main theorems
Further validation of our semantics

• Forbidding causal cycles w/ acquire reads [1]

• SC semantics with proper synchronization

• Monotonicity of access modes

rem acq_causality { H } :
trco H
-> acquire_reads H
-> opaque_accesses H
-> acyclic (union (po H) (rf H)).

Proof.

Qed.

,em drf_sc { H } :
trco H
-> race_free H
-> acyclic (co H)
-> acyclic (sc (po H) H).

Proof.

Qed.

Theorem monotonicity { H1 H2 } :
acyclic (co H1)
-> trco H2
-> match H2 H1
-> fiat_vo H2
-> access_lte_ordered H2 H1
-> acyclic (co H2).

Proof.

Qed.

OOPSLA'19

Theorems

Three main theorems
Further validation of our semantics

• Forbidding causal cycles w/ acquire reads [1]

• SC semantics with proper synchronization

• Monotonicity of access modes

rem acq_causality { H } :
trco H
-> acquire_reads H
-> opaque_accesses H
-> acyclic (union (po H) (rf H)).

Proof.

Qed.

rem drf_sc { H } :
trco H
-> race_free H
-> acyclic (co H)
-> acyclic (sc (po H) H).

Proof.

Qed.

plain E opaque E release-acquire E volatile

OOPSLA'19

Theorems

Three main theorems
Further validation of our semantics

rem acq_causality { H } :
trco H
-> acquire_reads H
-> opaque_accesses H
-> acyclic (union (po H) (rf H)).

Proof.

Qed.

rem drf_sc { H } :
trco H
-> race_free H
-> acyclic (co H)
-> acyclic (sc (po H) H).

Proof.

Qed.

Theorem monotonicity { H1 H2 } :
acyclic (co H1)
-> trco H2
-> match H2 H1
-> - fiat_vo H2
-> access_lte_ordered H2 H1
-> acyclic (co H2).

Proof.

Qed.

OOPSLA'19

Theorems

Three main theorems
Further validation of our semantics

Unobservable partial
Impossible to construct a litmus test

rem acq_causality { H } :
trco H
-> acquire_reads H
-> opaque_accesses H
-> acyclic (union (po H) (rf H)).

Proof.

Qed.

rem drf_sc { H } :
trco H
-> race_free H
-> acyclic (co H)
-> acyclic (sc (po H) H).

Proof.

Qed.

Theorem monotonicity { H1 H2 } :
acyclic (co H1)
-> trco H2
-> match H2 H1
-> - fiat_vo H2
-> access_lte_ordered H2 H1
-> acyclic (co H2).

Proof.

Qed.

Conclusion

Future Work

Update Java language spec
Documentation, Java stress tests

Cost of forbidding causal cycles
Performance evaluation, optimization techniques

Fuzzing Hotspot
Find behaviors allowed by VM, not by model

Logic for specified orders
Reasoning in SC, proof in Opaque Mode

Specified orders for crash protocols
Replace fsync with specified orders

Specified Orders as hardware synch.
Evaluating performance benefits over fences

Unified semantics for DS and Java
Partial order on writes is DS-like

Thanks!
questions?

