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Key Information
• Electromagnetic wave propagation in a nano-resonator

that has a temporally variant refractive index induces
frequency conversion of the confined photons.

• The conversion is dependent on the quality factor (Q) of
the resonator.

• All-dielectric metasurfaces give us: low absorption, high
damage threshold, tunable via optical pumping, Mie
modes for design flexibility.

• Breaking the resonator symmetry allows coupling
between bright and otherwise-dark modes that results in
Fano resonances of far higher Q than the original modes.

• The frequency conversion is not based on a material
nonlinearity and thus may be observed at low fluence.
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(a) Principle of frequency conversion

in a cavity. Probe photons exist in the

cavity at to when the pump reduces

the index of the cavity (b). The

probe is blue-shifted as the index is

reduced.
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(top) FDTD spectra of the metasurface.
ED & Fano: Color & Quiver show E field

MD: Color shows E field, Quiver shows H field
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Via Broken Symmetry

Device Dimensions and SEMs are shown (top). a) shows the
transient reflectance dynamics of the Fano resonance as it is
pumped and recovers. b) shows the Fano resonance as it is
shifted due to pump-induced free carrier generation in the
resonator at a pump fluence of 150 p.J•cm-2.
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Pump-Probe Reflectance Spectroscopy
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No pump interaction -
Probing the default
metasurface response
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A,C,E) Transient analysis of the modes
B,D,F) Spectra of the reflected cavity mode from CMT

Frequency Conversion Results
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Frequency conversion -
Probe photons in the
cavity when the pump is
incident

The observed fringes
are independent of the
relative pump-probe
polarization.

80 fs Pump pulse, 600 [.tJ cm-2
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Experimental transient reflectance spectra as a function of pump-probe time delay. The
fringes in the spectra between -1 and 0 ps are due to interference between the blue-
shifted probe and the incident probe. The right plot shows a close up of the left plot.
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Left plot shovAveMeniqmental spectra at various time delays from the above plots. Right
shows CMT calculated comparisons. The observed fringes are understood as interference
between the blue-shifted nrobe and the incident nrobe as calculated in CMT.

4.

Coupoled Mode Theory

Time Dependent CMT

• The dynamics of the system are well described by a
dynamic coupled-mode theory.

• In this analysis we modify standard coupled mode theory
for a single-mode metasurface to include a time dependent
central frequency and quality factor (loss).

a(t) + o(t)a(t) + [Yr + ynr(t)Ict(t) = A/Tr siF (t),

si (t) = siF (t) - a(t)

N(t)I
(DM = wo + „ Aco,

iv max

Ynr(t) =
a(t) - complex mode amplitude,
co (t) - mode center frequency, N (t) =
y (t) - mode damping,
N (t) - carrier concentration, note: l An] a N (t),
siE (t) = so exp(-i(.00t C/Tp2robe) - incident broadband probe.
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Experimental vs CMT
for two different pump
pulse durations, pump
fluence = 150 µ.1 cm-2

Top Tpump= 200 fs,

Bottom Tpump = 60 fs.

Shorter pump pulses
result in greater lAnl/At
which increases the
frequency conversion.

Greater pump fluence
also increases lAnl/At
and improves frequency
conversion.

• We have demonstrated a dielectric time-variant metasurface that exhibits
linear frequency conversion at NIR wavelengths.

• The frequency conversion is a result of the probe photons experiencing
an ultrafast shift in the refractive index of the GaAs resonator. The
quality factor of the resonator must be sufficiently high to observe this
effect, here we achieve this by breaking the resonator symmetry.

• The frequency conversion is not based on a material nonlinearity and
thus may be observed at low pump and probe fluence.

• The low required pump fluence (<150 µ.1 cm-2) is also due to the use of
direct-gap semiconductors having high linear absorption at 800 nm.

• The observed results indicate that frequency conversion metasurfaces are
a novel time-variant nonlinear platform that could be applied towards
various applications in ultrafast photonics.
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