Key Information

* Electromagnetic wave propagation in a nano-resonator
that has a temporally variant refractive index induces
frequency conversion of the confined photons.

* The conversion 1s dependent on the quality factor (Q) of

the resonator.

* All-dielectric metasurfaces give us: low absorption, high
damage threshold, tunable via optical pumping, Mie

modes for design flexibility.

* Breaking the resonator symmetry allows coupling
between bright and otherwise-dark modes that results 1n
Fano resonances of far higher Q than the original modes.

* The frequency conversion is not based on a material
nonlinearity and thus may be observed at low fluence.
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(a) Principle of frequency conversion
in a cavity. Probe photons exist in the

cavity at t, when the pump reduces (top) FDTD spectra of the metasurface.
the index of the cavity (b). The ED & Fano: Color & Quiver show E field

probe is blue-shifted as the index is MD: Color shows E field, Quiver shows H field

reduced.
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Via Broken Symmetry
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Device Dimensions and SEMs are shown (top). a) shows the
transient reflectance dynamics of the Fano resonance as it is
pumped and recovers. b) shows the Fano resonance as it is
shifted due to pump-induced free carrier generation in the
resonator at a pump fluence of 150 pJ-cm™.
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Pump-Probe Reflectance Spectroscopy
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Three pump-probe time delay regimes (from CMT)
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A,C,E) Transient analysis of the modes

B,D,F) Spectra of the reflected cavity mode from CMT

Frequency Conversion Results

80 fs Pump pulse, 600 p cm2
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No pump interaction —
Probing the default
metasurface response

Standard pump-probe
spectroscopy — Probing the
effect of the pump on the
resonator index

Frequency conversion —
Probe photons 1n the
cavity when the pump is
incident

The observed fringes
are independent of the
relative pump-probe
polarization.

80 fs Pump pulse, 600 p cm™2
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Experimental transient reflectance spectra as a function of pump-probe time delay. The
fringes in the spectra between -1 and 0 ps are due to interference between the blue-

shifted probe and the incident probe. The right plot shows a close up of the left plot.
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Left plot shows experl)mental spectra at various time delays from the above plots. Right
shows CMT calculated comparisons. The observed fringes are understood as interference
between the blue-shifted probe and the incident probe as calculated in CMT.
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4 Coupled Mode Theory

Time Dependent CMT

a(t) +iw()at) + [1r + ¥ar(©]a®) = rrs7 (0, w(t) = wy+ [N(t) Aw,

The dynamics of the system are well described by a
dynamic coupled-mode theory.

In this analysis we modify standard coupled mode theory
for a single-mode metasurface to include a time dependent
central frequency and quality factor (loss).

Nmax

sy (t) =57 (t) —rra(t)

N(t)
Vnr(t) = Ynr,0 + N Aan;

a(t) - complex mode amplitude, - A
w(t) - mode center frequency, N(t) = Ny on 1+ Erf[(t = 0)/Tpump] ,
Y (t) - mode damping, 2
N (t) - carrier concentration, note: |An| < N(t),
st (t) = sqexp(—iwgt — t? /Témbe) - incident broadband probe.
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Experimental CMT /

We have demonstrated a dielectric time-variant metasurface that exhibits
linear frequency conversion at NIR wavelengths.

The frequency conversion 1s a result of the probe photons experiencing
an ultrafast shift in the refractive index of the GaAs resonator. The
quality factor of the resonator must be sufficiently high to observe this
effect, here we achieve this by breaking the resonator symmetry.

The frequency conversion 1s not based on a material nonlinearity and
thus may be observed at low pump and probe fluence.

The low required pump fluence (<150 pJ cm) is also due to the use of
direct-gap semiconductors having high linear absorption at 800 nm.

The observed results indicate that frequency conversion metasurfaces are
a novel time-variant nonlinear platform that could be applied towards

various applications in ultrafast photonics.
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