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P1673 is a C++ BLAS binding UL

= Basic Linear Algebra Subroutines
= > 40 years’ practice; 2002 Standard w/ Fortran & C interfaces

= “ .standard building blocks for performing basic vector and matrix
operations” (netlib.org/blas/)

= Many optimized implementations
= Free functions taking mdspan (PO009) or mdarray (P1684)

= mdspan : matrix algorithms :: iterators/ranges : existing std algorithms

P1673 wraps & extends BLAS

= Same functions, but more supported element types, layouts, etc.

= |mpls. can call BLAS if it supports matrix element type & layout
= |Impls. can optimize more cases, like tiny compile-time dimensions

= SG14 voted in Cologne to move P1673 to LEWG
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Key features of P1673 i

= Extensible
= Collection of useful low-level standard algorithms
= |s not & need not be a total solution to linear algebra
= |f you like operator* etc., can build that on top of this
= Can grow, just like BLAS did (BLAS 1, 2, 3, Standard)

= Standardizes existing practice

= Many C++ linear algebra libraries use & wrap BLAS

= Low effort for vendors to optimize P1673

= Most already have an optimized BLAS library; just wrap it!
= Vendor coauthors: AMD, ARM, NVIDIA, & Intel

= Parallelizable & customizable via ExecutionPolicy
= Strategy for vectorization / SIMD (batched + layout)




Builds on several WG21 papers

= P1674: Design justification (please read first!)
= Evolution of a C++ linear algebra library from “raw” BLAS
= Explains common practice in many higher-level libraries & apps

= P1417: History of linear algebra libraries
= PO009 (mdspan) & P1684 (mdarray)

= Multidimensional arrays w/ customizable layout & access

= Can mix compile-time & run-time dimensions

= Views (mdspan) & containers (mdarray)
= P0OO009 at revision >=9 & in LWG review

P1673: Linear algebra proposal itself (don’t start here!)




What's linear algebra?

We focus on building blocks for computations, not math




Levels of linear algebra UL

= |evel -1: Data structures & iteration for matrices, vectors, ...
= |Level 0: Computational kernels (mostly + and *, some /)

= Vector-vector ops: dot, norm, vector sum
= Matrix-vector ops: matrix-vector multiply, triangular solve
= Matrix-matrix ops: matrix-matrix mult, tri solve, low-rank update

= Level 1: Solve low-level math problems
= Linear systems Ax = b (& determinants etc.)

= Least-squares problems min||Ax — b||
X

= Eigenvalue & singular value problems Ax = Ax

= Level 2: Solve higher-level math problems
= Nonlinear / time-dependent system of partial differential equations
= Approximate a huge problem by projecting onto a small Level 1
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Levels of linear algebra UL

PO009, P1684, Parallelism TS v2, ...
= |evel -1: Data structures & iteration for matrices, vectors, ...

Level 0: Computational kernels (mostly + and *, some /)

= Vector-vector ops: dot, norm, vector sum

|P1673

= Matrix-vector ops: matrix-vector multiply, triangular solve

= Matrix-matrix ops: matrix-matrix mult, tri solve, low-rank update
= Level 1: Solve low-level math problems
= Linear systems Ax = b (& determinants etc.) other C++ libraries
= Least-squares problems mxinlle — b| (no standard yet)
= Eigenvalue & singular value problems Ax = Ax

= Level 2: Solve higher-level math problems

= Nonlinear / time-dependent system of partial differential equations

= Approximate a huge problem by projecting onto a small Level 1




Basic Linear Algebra Subprograms @i
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sy
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= Developed in levels (1,2,3): e
= Vector-vector (BLAS 1): 1979
= Matrix-vector (BLAS 2): 1988 “"
= Matrix-matrix (BLAS 3): 1990 T

= Higher level =» more data reuse  (Fortran) BLAS quick reference:

http://www.netlib.org/blas
(See also Jack Dongarra’s oral history)
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= Many vendor impl’s, e.g.,
= AMD, ARM, IBM, Intel, NVIDIA




BLAS 1-3 coevolved w/ computers @&,

Vector (Cray, NEC)

= Low flop/byte ratio

= Favor long,
dependence-free Yunsup Lee holding
loops & regular RISC V prototype, 2013
data access v 7 74

= BLAS 1 target

Seymour Cray w/ Cache based
Cray 1, circa 1976 . xill : ”
(when LINPACK Killer micros” (see

funding started) 1991 NYT article)
= High flop/byte ratio
= Favor data reuse
= BLAS 3 target




BLAS codesigned w/ algorithms UL

= LINPACK library: 1979

= General dense, symmetric, & banded
= Linear systems (LU, Cholesky)
= Linear least squares (QR)

= Designed to use BLAS (1), for good
performance on many different computers

= LAPACK: 1990

L A P A C K
. . . L-A P-A C-K
= Combines functionality of LINPACK + EISPACK C W
({eigen,singular} value problems) LA PACK
= “Coreleased” w/ BLAS 3, w/ common authors FEII
L-A-P A C-K

= Algorithms that better exploit data reuse Users' G

= BLAS 3 designed for those algorithms e




Imitate BLAS’ std-ization approach @iz

= Standardize in layers, bottom up
= Lowest: Multidimensional arrays, SIMD types & ops

= Lower: Fundamental algebra of matrices & vectors
= Higher: Linear systems, least squares, eigenvalue problems, ...

= Layer by developers’ expertise
= BLAS: hardware / performance; LAPACK: numerical analysis
= Kazushige Goto (talented BLAS optimizer) is self-taught [1]
= Std Lib implementers not typically trained in numerical analysis

= Layer for performance portability
= Design higher levels to spend most time in lower levels
= Multiple implementations add more value at lower levels
= Vendors can tune lower levels for specific hardware
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BLAS designed for optimal algs. UL

= BLAS designed for LAPACK’s algorithms

= Will future algorithms need different fundamental operations?
= Would a bottom-up approach risk overspecializing the lowest level?

= OK: LAPACK-like algorithms are optimal lﬁ‘;em

= Last 2 decades: Many theoretical results on Volume 23
algorithm optimality (matrix & tensor), so
unlikely to need radical interface changes

= |owest level useful, whether or not matrix

factorization algorithms change radically o
See “Communication lower

= Participation by more communities (e.g., bounds & optimal algorithms
for numerical linear algebra,”

embedded, graph!cs, .macr.\me learning) will Ballard, Carson, Demmel,
reduce overspecification risk Hoemmen, Knight, & Schwarz,

2014
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SG14: Don’t rely on inlining UL

= P1832: Avoid relying on inlining for decent performance

= Debug builds shouldn’t be too slow

= Reduce build times & sizes (debug symbols) (Big deal for us too!)
= e.g., build failures due to compiler / linker running out of memory

= P1673 advantages
= Design encourages vendors to precompile complex optimized code
= matrix_product: if constexpr “Can | call BLAS?”, else easy loops
= Minimize dependence on inlining in inner loops

" |Indexing: typical mdspan inline depth 2-3
= Success w/ inlining in production code (see P3HPC submission to SC19)

= Standardizing mdspan makes special-case inlining possible, like
std::vector::operator|]

= Avoid expression templates (free functions only)
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More SG14 feedback ) e

= Users must be able to change back-end if slow
= P1673: Customize via ExecutionPolicy overloads
= Compare to classic C++ linear algebra technique: “Engine”

= Sometimes need to optimize for tiny problems

= Batched: Expose parallelism / vectorization over multiple problems
= P1673 option: Pack as extra md{span,array} dimension
= mdspan Layout for contiguous / coalesced access
= e.g., w/ LayoutLeft, A_batch(p,i,j), A_batch(p+1,i,j) contiguous
= mdspan Accessor for any needed decorations (e.g., restrict, alignment)
= Micro (“uBLAS”): solve one problem at a time
= Typical game developer use cases: {4x4,3x3} matrices, {3,4}x1 vectors
= P1673: mdarray (P1684) interface, but see Questions
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Q: Tiny interface (UBLAS) ) .

= P1673 imitates existing standard algorithms
" mdspan : matrix algorithms :: iterators/ranges : std algorithms
= |terate over data structures; don’t return deep copies
= Matches BLAS: No dynamic allocation = don’t “return a new matrix”

= What about tiny vectors & matrices (e.g., fit in void*)?

= mdspan must store at least a pointer (it’s a view)

= P1673 approach: Pass mdarray by reference (input & output)
" Goal: Uniform interface for problems of all sizes

= Assumes compiler can optimize mdarray<T, extents<N>> like
fixed_size_simd<T, N> (or we could simply take *simd types)

= SIMD TS passes input arguments by reference, but returns by value
= Q: Do we need a different interface for tiny objects?
= |f so, can we defer this to future SIMD TS addition?
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Q: Thin BLAS ) .

= P1673: BLAS 1 overlaps w/ standard algorithms

= We plan to add range adapters for rank-1 md{span,array}
= Separate paper add-on to PO0O09
= Would make transform, reduce, copy, max_element, etc. work
= But, users like traditional names, & vendors can add value (e.g.,
accuracy, reproducibility) to dot, nrm2, ...
= Rank-N? Iterators not the best idiom for multidimensional arrays
= Compilers good at optimizing nested for loops with integer indices
= Multi-D iterators have more state; compilers would need “retraining”

= Multi-D iterators would delay standardization w/out new functionality

= Q: How much of the BLAS 1 belongs in C++?




Summary ) .

= P1673 key features
= Standardizes 40 years of BLAS & 25+ years of C++ BLAS interfaces
= Vendors have low effort to optimize P1673: Wrap existing BLAS
= Not a total solution to linear algebra; can grow, just like BLAS did
= Parallel & customizable via ExecutionPolicy, like std algorithms
= SIMD solution: Batched + custom Layout + custom Accessor

= (Questions for SG14
= Need different interface for tiny problems (uBLAS)?

= BLAS 1 has useful names & functionality, but overlaps with existing
standard algorithms; how much overlap should we permit?




Extra slides .




Problems with current BLAS ) e,

= |t's not C++, it’s Fortran
= Fortran name mangling & ABI not portable & vary widely
= C BLAS exists but not universally available
= Not templated; only works w/ 4 element types
= float, double, complex<float>, complex<double>
= Assumes Fortran & C++ complex have same bit representation
= CBLAS takes void* for complex values & arrays
= Machine learning wants half precision, etc.
= Data layout & storage restricted

= Fortran BLAS only takes column-major arrays
= No way to interface w/ C++ executors

= Hard to use: takes a bazillion integers & raw pointers
= Matlab exists because BLAS & LINPACK were hard to use 19




Alternate procedural approaches @&

= Qutside WG21 & C++ Standard Library
= Add C++ binding to BLAS Standard?

= (+) Meeting minutes show they planned a C++ interface [2]

= (0) C++ & Java excluded: “time constraints” & possible Java changes
= (+) CBLAS exists & has support from multiple vendors

= (-) Invading small (< 20) focused committee, inactive nearly 20 years
= (-) WG21 linear algebra interests may differ a lot from theirs

= (-) May reject C++ binding if too semantically different (compare: MPI
rejected original C++ interface; result satisfied few & was deprecated)

= Form our own standard?

= Experience from Batched BLAS & GraphBLAS: this process more useful
for organizing research collaborations, than for agreeing on a standard
interface
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Fundamental or batteries included?

= See [3,4]: Fundamental-ness influences WG21 prioritization

= Lowest level of linear algebra: Clearly fundamental, including
= Multidimensional arrays: PO009, mdspan, at LWG level
= SIMD types & ops: Voted into Parallelism TS 2

= What makes them fundamental?
= Need / would benefit from compiler support

= \/ocabulary

= Multiple use cases




Multidimensional arrays: mdspan @&

= P0009, currently in LWG wording review

= Meant as a zero-overhead abstraction
= Like Fortran arrays, complete w/ slices
= Can mix compile- & run-time dimensions
= Compiler could optimize indexing

= Polymorphic data layout
= Needed for performance with tensors & batched small dense
= Performance portability (tune layout for architecture)
= Compatibility with different libraries in other languages

= Polymorphic storage & access

= Path forward for heterogeneous computing (memory spaces)
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Is mdspan a “matrix”? =,

= Useful array features

= Encapsulates BLAS arguments
like dimensions & strides

= Slices, like Matlab or NumPy

= Efficient array access that
compilers could optimize

= mdspan is a view [views]
= Can’t create (allocate) matrix
= But see mdarray (P1684)

= Not a matrix; usable by it

= mdspan lacks mathematical
structure, but so does BLAS

“Room above” mdspan:
= QOwning tensor / mat / vec classes
= Dispatch to mdspan kernels

= Build user-friendly expressions
atop mdspan & kernels

= Users responsible for math

23
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HPC’s priorities

= May not aligh 100% w/ graphics, etc., but we think...
= ..we have compatible interests, esp. w/ layered approach

= Lower-level primitives would address most of our concerns
= e.g., free functions for matrix & vector algebra that take mdspan

= Higher-level expressions
= Expression templates are not a priority for us, but...
= _..we do not oppose them & think they are complementary




Conclusions ) 2=

= |f we want to standardize a C++ linear algebra library,
= we should learn from BLAS Standard’s successes:

= Standardize in layers, from the bottom up
= Layer by expertise: hardware / performance vs. numerical analysis
= |dentify fundamentals for any linear algebra / tensor library

= SIMD types & ops: Voted into N4744 (Parallelism TS 2)
= Multidimensional arrays: PO009, in LWG wording review

= Fundamental algebra of matrices & vectors: This week :-D

= Thanks to P1417 coauthors & all of you!
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