This paper describes objective technical results and analysis. Any subjective views or opinions that might be expressed
in the paper do not necessarily represent the views of the U.S. Department of Energy or the United States Government.

SAND2019-11113C

P1673: A proposal for a C++
Standard linear algebra library

Mark Hoemmen (mhoemme@sandia.gov)

CppCon, SG14 meeting, 18 Sep 2019
SAND2019-XXXX C (UUR)

U.8. DEPARTMENT OF UV YA =)
@ E"ERGY .v" Sandia National Laboratories is a multimission laboratory managed and operated by National Technology & Engineering Solutions of Sandia, LLC, a wholly owned
At Nt Sty At subsidiary of Honeywell International, Inc., for the U.S. Department of Energy’s National Nuclear Security Administration under contract DE-NA0003525.

P1673 is a C++ BLAS binding UL

= Basic Linear Algebra Subroutines
= > 40 years’ practice; 2002 Standard w/ Fortran & C interfaces

= “ .standard building blocks for performing basic vector and matrix
operations” (netlib.org/blas/)

= Many optimized implementations
= Free functions taking mdspan (PO009) or mdarray (P1684)

= mdspan : matrix algorithms :: iterators/ranges : existing std algorithms

P1673 wraps & extends BLAS

= Same functions, but more supported element types, layouts, etc.

= |mpls. can call BLAS if it supports matrix element type & layout
= |Impls. can optimize more cases, like tiny compile-time dimensions

= SG14 voted in Cologne to move P1673 to LEWG

2

Key features of P1673 i

= Extensible
= Collection of useful low-level standard algorithms
= |s not & need not be a total solution to linear algebra
= |f you like operator* etc., can build that on top of this
= Can grow, just like BLAS did (BLAS 1, 2, 3, Standard)

= Standardizes existing practice

= Many C++ linear algebra libraries use & wrap BLAS

= Low effort for vendors to optimize P1673

= Most already have an optimized BLAS library; just wrap it!
= Vendor coauthors: AMD, ARM, NVIDIA, & Intel

= Parallelizable & customizable via ExecutionPolicy
= Strategy for vectorization / SIMD (batched + layout)

Builds on several WG21 papers

= P1674: Design justification (please read first!)
= Evolution of a C++ linear algebra library from “raw” BLAS
= Explains common practice in many higher-level libraries & apps

= P1417: History of linear algebra libraries
= PO009 (mdspan) & P1684 (mdarray)

= Multidimensional arrays w/ customizable layout & access

= Can mix compile-time & run-time dimensions

= Views (mdspan) & containers (mdarray)
= P0OO009 at revision >=9 & in LWG review

P1673: Linear algebra proposal itself (don’t start here!)

What's linear algebra?

We focus on building blocks for computations, not math

Levels of linear algebra UL

= |evel -1: Data structures & iteration for matrices, vectors, ...
= |Level 0: Computational kernels (mostly + and *, some /)

= Vector-vector ops: dot, norm, vector sum
= Matrix-vector ops: matrix-vector multiply, triangular solve
= Matrix-matrix ops: matrix-matrix mult, tri solve, low-rank update

= Level 1: Solve low-level math problems
= Linear systems Ax = b (& determinants etc.)

= Least-squares problems min||Ax — b||
X

= Eigenvalue & singular value problems Ax = Ax

= Level 2: Solve higher-level math problems
= Nonlinear / time-dependent system of partial differential equations
= Approximate a huge problem by projecting onto a small Level 1

6
-

Levels of linear algebra UL

PO009, P1684, Parallelism TS v2, ...
= |evel -1: Data structures & iteration for matrices, vectors, ...

Level 0: Computational kernels (mostly + and *, some /)

= Vector-vector ops: dot, norm, vector sum

|P1673

= Matrix-vector ops: matrix-vector multiply, triangular solve

= Matrix-matrix ops: matrix-matrix mult, tri solve, low-rank update
= Level 1: Solve low-level math problems
= Linear systems Ax = b (& determinants etc.) other C++ libraries
= Least-squares problems mxinlle — b| (no standard yet)
= Eigenvalue & singular value problems Ax = Ax

= Level 2: Solve higher-level math problems

= Nonlinear / time-dependent system of partial differential equations

= Approximate a huge problem by projecting onto a small Level 1

Basic Linear Algebra Subprograms @i

Apply modified plane rotation
sy

= Standard published 2002 N el
= 1995-99 meetings

fimfe)] +

i
£

. |+ imia)l)
= Fortran Interraces
o TRASS, . 8, KL, WU, ALPEA, A, LD4, X, INCX, T) yeodit dyyeadTa s dpyeada i By A mxn
] = : ,

XTISY (UMD, TAANS, ONIG,

= Developed in levels (1,2,3): e
= Vector-vector (BLAS 1): 1979
= Matrix-vector (BLAS 2): 1988 “"
= Matrix-matrix (BLAS 3): 1990 T

= Higher level =» more data reuse (Fortran) BLAS quick reference:

http://www.netlib.org/blas
(See also Jack Dongarra’s oral history)

-

. I5CX, Y, INCT, 4P)

11 aop(AR, B « aBopl(A), op(A
B aop(A 8,8 — alop(A

= Many vendor impl’s, e.g.,
= AMD, ARM, IBM, Intel, NVIDIA

BLAS 1-3 coevolved w/ computers @&,

Vector (Cray, NEC)

= Low flop/byte ratio

= Favor long,
dependence-free Yunsup Lee holding
loops & regular RISC V prototype, 2013
data access v 7 74

= BLAS 1 target

Seymour Cray w/ Cache based
Cray 1, circa 1976 . xill : ”
(when LINPACK Killer micros” (see

funding started) 1991 NYT article)
= High flop/byte ratio
= Favor data reuse
= BLAS 3 target

BLAS codesigned w/ algorithms UL

= LINPACK library: 1979

= General dense, symmetric, & banded
= Linear systems (LU, Cholesky)
= Linear least squares (QR)

= Designed to use BLAS (1), for good
performance on many different computers

= LAPACK: 1990

L A P A C K
. . . L-A P-A C-K
= Combines functionality of LINPACK + EISPACK C W
({eigen,singular} value problems) LA PACK
= “Coreleased” w/ BLAS 3, w/ common authors FEII
L-A-P A C-K

= Algorithms that better exploit data reuse Users' G

= BLAS 3 designed for those algorithms e

Imitate BLAS’ std-ization approach @iz

= Standardize in layers, bottom up
= Lowest: Multidimensional arrays, SIMD types & ops

= Lower: Fundamental algebra of matrices & vectors
= Higher: Linear systems, least squares, eigenvalue problems, ...

= Layer by developers’ expertise
= BLAS: hardware / performance; LAPACK: numerical analysis
= Kazushige Goto (talented BLAS optimizer) is self-taught [1]
= Std Lib implementers not typically trained in numerical analysis

= Layer for performance portability
= Design higher levels to spend most time in lower levels
= Multiple implementations add more value at lower levels
= Vendors can tune lower levels for specific hardware

11

BLAS designed for optimal algs. UL

= BLAS designed for LAPACK’s algorithms

= Will future algorithms need different fundamental operations?
= Would a bottom-up approach risk overspecializing the lowest level?

= OK: LAPACK-like algorithms are optimal lﬁ‘;em

= Last 2 decades: Many theoretical results on Volume 23
algorithm optimality (matrix & tensor), so
unlikely to need radical interface changes

= |owest level useful, whether or not matrix

factorization algorithms change radically o
See “Communication lower

= Participation by more communities (e.g., bounds & optimal algorithms
for numerical linear algebra,”

embedded, graph!cs, .macr.\me learning) will Ballard, Carson, Demmel,
reduce overspecification risk Hoemmen, Knight, & Schwarz,

2014
12

SG14: Don’t rely on inlining UL

= P1832: Avoid relying on inlining for decent performance

= Debug builds shouldn’t be too slow

= Reduce build times & sizes (debug symbols) (Big deal for us too!)
= e.g., build failures due to compiler / linker running out of memory

= P1673 advantages
= Design encourages vendors to precompile complex optimized code
= matrix_product: if constexpr “Can | call BLAS?”, else easy loops
= Minimize dependence on inlining in inner loops

" |Indexing: typical mdspan inline depth 2-3
= Success w/ inlining in production code (see P3HPC submission to SC19)

= Standardizing mdspan makes special-case inlining possible, like
std::vector::operator|]

= Avoid expression templates (free functions only)

13

More SG14 feedback) e

= Users must be able to change back-end if slow
= P1673: Customize via ExecutionPolicy overloads
= Compare to classic C++ linear algebra technique: “Engine”

= Sometimes need to optimize for tiny problems

= Batched: Expose parallelism / vectorization over multiple problems
= P1673 option: Pack as extra md{span,array} dimension
= mdspan Layout for contiguous / coalesced access
= e.g., w/ LayoutLeft, A_batch(p,i,j), A_batch(p+1,i,j) contiguous
= mdspan Accessor for any needed decorations (e.g., restrict, alignment)
= Micro (“uBLAS”): solve one problem at a time
= Typical game developer use cases: {4x4,3x3} matrices, {3,4}x1 vectors
= P1673: mdarray (P1684) interface, but see Questions

14

Q: Tiny interface (UBLAS)) .

= P1673 imitates existing standard algorithms
" mdspan : matrix algorithms :: iterators/ranges : std algorithms
= |terate over data structures; don’t return deep copies
= Matches BLAS: No dynamic allocation = don’t “return a new matrix”

= What about tiny vectors & matrices (e.g., fit in void*)?

= mdspan must store at least a pointer (it’s a view)

= P1673 approach: Pass mdarray by reference (input & output)
" Goal: Uniform interface for problems of all sizes

= Assumes compiler can optimize mdarray<T, extents<N>> like
fixed_size_simd<T, N> (or we could simply take *simd types)

= SIMD TS passes input arguments by reference, but returns by value
= Q: Do we need a different interface for tiny objects?
= |f so, can we defer this to future SIMD TS addition?

15

Q: Thin BLAS) .

= P1673: BLAS 1 overlaps w/ standard algorithms

= We plan to add range adapters for rank-1 md{span,array}
= Separate paper add-on to PO0O09
= Would make transform, reduce, copy, max_element, etc. work
= But, users like traditional names, & vendors can add value (e.g.,
accuracy, reproducibility) to dot, nrm2, ...
= Rank-N? Iterators not the best idiom for multidimensional arrays
= Compilers good at optimizing nested for loops with integer indices
= Multi-D iterators have more state; compilers would need “retraining”

= Multi-D iterators would delay standardization w/out new functionality

= Q: How much of the BLAS 1 belongs in C++?

Summary) .

= P1673 key features
= Standardizes 40 years of BLAS & 25+ years of C++ BLAS interfaces
= Vendors have low effort to optimize P1673: Wrap existing BLAS
= Not a total solution to linear algebra; can grow, just like BLAS did
= Parallel & customizable via ExecutionPolicy, like std algorithms
= SIMD solution: Batched + custom Layout + custom Accessor

= (Questions for SG14
= Need different interface for tiny problems (uBLAS)?

= BLAS 1 has useful names & functionality, but overlaps with existing
standard algorithms; how much overlap should we permit?

Extra slides .

Problems with current BLAS) e,

= |t's not C++, it’s Fortran
= Fortran name mangling & ABI not portable & vary widely
= C BLAS exists but not universally available
= Not templated; only works w/ 4 element types
= float, double, complex<float>, complex<double>
= Assumes Fortran & C++ complex have same bit representation
= CBLAS takes void* for complex values & arrays
= Machine learning wants half precision, etc.
= Data layout & storage restricted

= Fortran BLAS only takes column-major arrays
= No way to interface w/ C++ executors

= Hard to use: takes a bazillion integers & raw pointers
= Matlab exists because BLAS & LINPACK were hard to use 19

Alternate procedural approaches @&

= Qutside WG21 & C++ Standard Library
= Add C++ binding to BLAS Standard?

= (+) Meeting minutes show they planned a C++ interface [2]

= (0) C++ & Java excluded: “time constraints” & possible Java changes
= (+) CBLAS exists & has support from multiple vendors

= (-) Invading small (< 20) focused committee, inactive nearly 20 years
= (-) WG21 linear algebra interests may differ a lot from theirs

= (-) May reject C++ binding if too semantically different (compare: MPI
rejected original C++ interface; result satisfied few & was deprecated)

= Form our own standard?

= Experience from Batched BLAS & GraphBLAS: this process more useful
for organizing research collaborations, than for agreeing on a standard
interface

20

7| Netora

Fundamental or batteries included?

= See [3,4]: Fundamental-ness influences WG21 prioritization

= Lowest level of linear algebra: Clearly fundamental, including
= Multidimensional arrays: PO009, mdspan, at LWG level
= SIMD types & ops: Voted into Parallelism TS 2

= What makes them fundamental?
= Need / would benefit from compiler support

= \/ocabulary

= Multiple use cases

Multidimensional arrays: mdspan @&

= P0009, currently in LWG wording review

= Meant as a zero-overhead abstraction
= Like Fortran arrays, complete w/ slices
= Can mix compile- & run-time dimensions
= Compiler could optimize indexing

= Polymorphic data layout
= Needed for performance with tensors & batched small dense
= Performance portability (tune layout for architecture)
= Compatibility with different libraries in other languages

= Polymorphic storage & access

= Path forward for heterogeneous computing (memory spaces)

22

Is mdspan a “matrix”? =,

= Useful array features

= Encapsulates BLAS arguments
like dimensions & strides

= Slices, like Matlab or NumPy

= Efficient array access that
compilers could optimize

= mdspan is a view [views]
= Can’t create (allocate) matrix
= But see mdarray (P1684)

= Not a matrix; usable by it

= mdspan lacks mathematical
structure, but so does BLAS

“Room above” mdspan:
= QOwning tensor / mat / vec classes
= Dispatch to mdspan kernels

= Build user-friendly expressions
atop mdspan & kernels

= Users responsible for math

23
-

HPC’s priorities

= May not aligh 100% w/ graphics, etc., but we think...
= ..we have compatible interests, esp. w/ layered approach

= Lower-level primitives would address most of our concerns
= e.g., free functions for matrix & vector algebra that take mdspan

= Higher-level expressions
= Expression templates are not a priority for us, but...
= _..we do not oppose them & think they are complementary

Conclusions) 2=

= |f we want to standardize a C++ linear algebra library,
= we should learn from BLAS Standard’s successes:

= Standardize in layers, from the bottom up
= Layer by expertise: hardware / performance vs. numerical analysis
= |dentify fundamentals for any linear algebra / tensor library

= SIMD types & ops: Voted into N4744 (Parallelism TS 2)
= Multidimensional arrays: PO009, in LWG wording review

= Fundamental algebra of matrices & vectors: This week :-D

= Thanks to P1417 coauthors & all of you!

References) 2=

= [1] John Markoff, “Writing the Fastest Code, by Hand, for Fun: A Human
Computer Keeps Speeding Up Chips,” New York Times, Nov. 28, 2005.

= [2] BLAST Forum MINUTES, NIST, Washington, D.C., Oct. 8-9, 1998.
Available online: http://www.netlib.org/blas/blast-forum/blast-forum-
minutes.oct8-9.98.html [last accessed Feb. 14, 2019].

= [3] Guy Davidson, “Batteries not included: what should go in the C++
standard library?”, World of hatcat, Feb. 16, 2018. Available online:
https://hatcat.com/?p=16 [last accessed Feb. 10, 2019].

= [4] Titus Winters, “What Should Go Into the C++ Standard Library,” Abseil
Blog, Feb. 27, 2018. Available online: https://abseil.io/blog/20180227-
what-should-go-stdlib [last accessed Feb. 10, 2019].

