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Why High Entropy Alloys - HEA?
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► Random composition
crystalline alloys,
four or more principal
equiatomic constituents.

► Great potential for structural
applications: strong,
degradation-resistant.

► Amenable to additive
manufacturing-AM?
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Goal:
AM-friendly HEA alloy for high-
temperature structural applications:
high ductility and fracture resistant

Challenges:
High dimension composition space
Constraints of AM conditions

Need:
Physics-based framework to guide
discovery/development of HEA

Focus: systematic computational framework for
atomic-based structure-property relationships.
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Anatomy of a multiscale materials model:
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> What do you want? Structure-property relationships
- structural stability 4 composition, phases, enthalpies
- strength 4 ductility, shear properties (and at high temperature)

> Need:
1. Accuracy of DFT (or better?) - too big/complex for DFT
2. Dynamical properties with MD - InterAtomic Potentials not accurate/available
3. Meso-scale microstructure evolution - lack effective models

DFT 4 IAP 4 MD Meso
MULTISCALE in the face of LARGE COMBINATORIAL COMPLEXITY

Exemplar: refractory Al-Nb-Ti "simple", interesting, less studied
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SNAP - Spectral Neighbor Analysis Potentials
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► SNAP describes local environment as
atomic (particle) density:
pi(r) = Or) E fe(Tii) —

<Rcut
= weights defining atomic species

= radial switching functions

► Density expressed in terms of bispectrum
components. Those bispectrum components
express energy and forces on each atom:

EiSNAP 134 13ai

OBi 
F:4 N AP — E Or
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► Fit bispectrum components and weights to
reproduce potential energy surface of DFT.

Data/ML-driven interatomic potential

Thompson, A. P., et al.. (2015). J. Comp. Phys., 285, 316-330.

Bispectrum components,

derivatives, references

potentials, ...

E,61AP = 13()+ f3"' • H.
411•••-•

Physical metrics
•Forces,
•Energies,
•Elastic constants, ...

•Molecular Dynamics engine

FitSNAP
•Communicate with LAMMPS; Weighted

regression to obtain SNAP coefficients.

•Optirnization and sensitivity

Iliv 
Database

•Atomic configurations,
forces, and energies.
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Hyper parameters
•Cutoff distance,
•Group weights,
•Number of terms, ...

... Only as good as its data
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DFT - HEA training data design
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Goals with DFT:
- accurate structure/composition energies
- accurate elastic properties
- discern crucial materials physics of HEA
- computationally practical (combinatorial complexity)

One configuration

J

•Energy of the configuration

•Nine virial components

(stress applied on the cell)

•Forces on the atoms,

35Natom quantities

Nconf*(7+3*Natoms(COnn) 4

Representative "SQS" model impractical and insufficient for HEA alloys

Strategic sampling of random 54-atom cubic (3x3x3) cells:

at "A:
.Pkk• IP" 4w An

• • •

- atoms isolated (near-sightedness), "cheap", equi-composition (18-18-18)
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Computational methods
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• General purpose DFT code SeqQuest (http://dft.sandia.gov/Quest)
— well-converged (Gaussian-based) local orbital basis

— both LDA and PBE functionals

— converged norm-conserving pseudopotentials

— full force-relaxed atoms

— stress-relaxed cells (accurate stress-strain)

— carefully verified against converged FP-LAPW results

• HEA supercells
— 54-atom cubic supercells (3x3x3 conventional 2-atom bcc cubic cell)

— real-space grids: 963

— offset k-grids

— Constrained to cubic

• And then also Quantum Espresso
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DFT - validation/accuracy
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Al

Nb

Ti

ao (A) co (A) c/a B(GPa) Energy

expt. fcc 4.04 72.2
PBE fcc 4.053 75 0

bCC 3.246 67 +0.093 eV/AI

expt. bcc 3.30 170.2
PBE bcc 3.316 171 0

expt. hcp 2.95 4.68 1.586 105.1
PBE hcp 2.931 4.662 1.590 114

bcc 3.352 108 +0.104/Ti

SeqQuest/PBE: lattice constants within < 1%
bulk moduli within 8%
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DFT- two-component B2/bcc alloys
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ao(Å) Al Nb Ti

Al 3.246

Nb 3.236 3.316

Ti 3.188 3.270 3.352

Expect ao - 3.2-3.3 A for HEA

Hf
(eV/fu)

Al Nb Ti

Al +0.186

Nb -0.050 0

Ti -0.537 +0.136 +0.206

Ti - Al very happy
Nb - Ti less happy

Need to be concerned about intermetallics?

B (GPa) Al Nb Ti

Al 67

Nb 141 171

Ti 113 135 108

Expect B - 110-140 GPa for HEA

Hfbcc

(eV/fu)
Al Nb Ti

Al 0

Nb -0.143 0

Ti -0.733 +0.035 0

Binding dominated by Ti - Al?



DFT Equation-of-State for HEA
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9

7 random colorings X 6 element mappingsAI ill VI It it • II •42 A118-Nb18--1118 cells

I Hf (meV/at)

18-18-18 3.246 (2) 125 (2)

Al-N b-Ti

176 (14)

20-19-15 3.245

19-21-14 3.249

17-15-22 3.242

21-14-19 3.240

20-16-18 3.242

Consistent between 42 random cells:
Random-54 cell - "SQS"

125 190

129 175 Deviation from equi-atomic:
124 170 Not sensitive

114 186

122 184

Vindicates sufficiency of 54-site cells.



Shear - k-point catastrophe?
Sandia
National
Laboratories

120

100

ao
0

60

40

20

T
0.1 —1-

-o 0 o o o o 2.0 *

—o--

. ...at...... .

Fig. 5

12 16 20 24 28 32 36 40 44

K-Point Mesh Divisions

48

5.0  *-
10.0 --a-
15.0

Mike Mehl, PRB 61, 1654 (2000)
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- Shear moduli do not converge

- Structure interacts with DOS at Ef
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General issue for metals —
Ta is worse (MSMSE 13, R1 2009)
Al is worse
NbTi (B2) is worse
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Need expensive >53 k-points for HEA?
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DFT for Nb is better, still bad

5
2 310 4 

1 
6 

20 
7 8 

25 
9

( 1 x 1 x 1) k-point dimension
( 3 x 3 x 3 ) k-point dimension

1g)



HEA elastic constants - strain-stress Hooke's Law
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I••• •••1 C11, c12

C11 - C12
C 9 = 2

c44

k(lx1x1) k(54-cell) C' (GPa) C44 (GPa) B (GPa)

6 x 6 x 6 2 x 2 x 2 15 69 125

9 x 9 x 9 3 x 3 x 3 17 70 125

12 x 12 x 12 4 x 4 x 4 18 71 126

Very fast convergence 
Compositional randomness 4 localizes electrons, damps electronic effects

DFT 4 IAP: sampling of small (54-atom), fast (2x2x2 k-pts) cells suffices



Framework for generating (decorrelated) DFT data
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e ak Initial state

•Niobium bcc lattice

•EAM Niobium potential

•Force minimization

Thermalization

—El
j

Themalized state
•Langevin thermostat

•Temperature: 1500K
4. •High phonon entropy
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Decorrelation
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Relaxation

Database

► 600 decorreiated MD configurations sampled

► DFT relaxation —40 steps 4 —24000 configurations

Use 5 energy-distinct points 4 3000 configurations
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0- 4 Damping full

0 Damping reduced

10 20 30 40 50
Iterations

Future:
Use ML to filter this copious data set.
Use ML to identify and augment deficiencies
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Summary and Prospects
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Developed physics-based protocol for DFT training data

Sampling small 54-site cells, random-composition sufficient

Small k-points suffice - atomic structure electronic structure

Huge training data possible 4 ideal for ML

Path to combinatorial 4-5-6-7 component HEA

Insensitivity to most variations in local environment

SNAP-ML potentials & training data protocols accommodate large data

• Future challenges:
Will these potentials really work? - see you next year
Can DFT and MD-SNAP give good enough data to inform meso?
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