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Abstract Infrared Spectra of Sarin Adsorption on UiO-66 Orientation Dependent Sarin Adsorption on UiO-66
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spectra is the W-grid with the MOF present before GB exposure. This Figure shows the growth of the GB IR bands as a
function of GB pressure. The pressures of GB exposure are at 108 (pink curve), 10”7 (red curve), 10® (orange curve),
2x10° (green and blue curves), and 5x10° (purple and black curves) Torr on UiO-66.

Sarin does not react on a dry UiO-66 surface in vacuum. However, upon
heating from room temperature (yellow curve) up to 400K (brown curve),
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" /\AéDaShed‘S‘m“'ate({'/ g d and the defect site) in increasing order of binding energy. The geometrical orientation of GB affects the CH modes in
Figure 1. Picture of high-vacuum chamber setup. Figure 2. (Left) Schematic of sample holder and manipulator. y it ST the IR spectrum to help identify the exact binding orientation. Additionally, GB decomposes on UiO-66 after heating
The techniques include transmission IR and (Right) Pictures of sample in the chamber (top) and the LAB 1300 1222/8 egfgber(;l?f? =00 900 200 the surface above 340K with no H,O present. Future work includes looking at GB interactions with MOFs with water
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mass spectrometry (MS). VIEW program for temperature control of the sample. present, and with isotopically-labeled GB and H,O to elucidate reaction mechanisms.
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