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Abstract 
Recent real-world events have emphasized the importance in developing efficient technologies for degrading

organophosphorous compounds. Metal-organic frameworks (MOF) are nanoporous materials that have been studied

by many in academia and the Army in the past decade because of their high surface areas, catalytic chemical warfare

agent (CWA) decomposition in buffer solution,1 and composition tunability. One MOF in particular, Ui0-66, has a base

unit consisting of a Zr604(OH)4-octahedron secondary building unit connected via 1,4-benzene-dicarboxlate (BDC)

linkers, and has been found to be highly stable in air and water.2 For all of the advantages Ui0-66 and MOFs (in

general) have, the role defects in the crystal structure play in adsorption and reactivity is not well understood. Here we

report a detailed transmission infrared spectroscopy (TIR) study of a CWA, Sarin (GB), and its in-situ adsorption and

subsequent reactivity on defective Ui0-66. We look at not just one but multiple IR modes including the P=O, C-H, C-O,

P-CH3, and P-F moieties to help understand the binding mechanism on the surface. Density functional theory

calculated IR spectra confirm that multiple favorable binding sites exist within the MOF3 and that these sites lead to

characteristic shifts in the P=0 stretch frequency. Understanding these mechanisms can help us design MOFs to

specific threats or applications for protection and decontamination.

Experimental Setup 

Figure 1. Picture of high-vacuum chamber setup.

The techniques include transmission IR and

mass spectrometry (MS).
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Figure 2. (Left) Schematic of sample holder and manipulator.

(Right) Pictures of sample in the chamber (top) and the LAB

VIEW program for temperature control of the sample.

Surface Characterization & Experimental Method 

Figure 3. X-Ray Diffraction pattern

of Ui0-66. This pattern indicates

the sample is crystalline.

Figure 4. DFT calculation of the Ui0-66 crystal

structure including an ideal site, a terminal ZrOH

site, a [13-0H site, and a defect site.45
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Figure 5. IR spectra of MOF + GB, MOF

only, and the subtracted IR spectra.
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Figure 6. Difference spectra of GB exposure on Ui0-66 with the MOF IR bands removed. The background for these

spectra is the W-grid with the MOF present before GB exposure. This Figure shows the growth of the GB IR bands as a

function of GB pressure. The pressures of GB exposure are at 10-8 (pink curve), 10-7 (red curve), 10-6 (orange curve),

2x10-6 (green and blue curves), and 5x10-6 (purple and black curves) Torr on Ui0-66.

Sarin Binding Sites on Ui0-66: Experiment and Theory Comparison 
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Figure 7. (Top, left) Difference spectra of GB exposure on Ui0-66 at different GB concentrations. As the pressure of GB

increases, the coverage of GB on the surface increases, and the P=0 IR bands blueshift from one site to another as

each site becomes saturated. The presence of the P-F mode confirms GB is adsorbed and does not decompose.

(Top, right) The experimental IR spectrum with the most GB coverage on the Ui0-66 surface is compared to different IR

calculated spectra to determine the different sites on the surface and their corresponding IR bands. The most

redshifted (lowest wavenumber, cm-1) P=0 IR band at 1212-1200 cm-1 corresponds to GB adsorbed on the defect site;

the P=0 IR band at 1235-1231 cm-1 corresponds to the ZrOH site; lastly, the P=0 IR band at 1266-1246 cm-1

corresponds to the ideal Zr site. Each adsorption site is depicted in a calculated schematic in the boxes. The binding

energies increase from ideal < ZrOH < defect site.
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Orientation Dependent Sarin Adsorption on Ui0-66
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(Left) The OH region shows a

blueshift in the [13-0H mode,

which indicates no adsorption

on that site; whereas, the

ZrOH mode redshifts and

broadens, which indicates GB

adsorption on that site.

(Right) The CH region has a

new IR mode at -2860 cm-1,

which could represent the

propoxy- or P-CH3- group

interacting with the ZrOH site.
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Sarin Degradation upon Heating in Vacuum 

Sarin does not react on a dry Ui0-66 surface in vacuum. However, upon

heating from room temperature (yellow curve) up to 400K (brown curve),

GB decomposes via the conversion of the P=0 modes at 1257-1212 cm-1 to

O-P-O modes at 1178 and 1090 cm-1. Additionally, the loss of C-O, P-CH3,

and P-F modes and the gain of new IR bands at lower wavenumbers

confirm decomposition. We cannot rule out partial GB desorption as well.

lf water was present on the surface, GB decomposition would likely occur

even at room temperature.
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Conclusions & Future Work 
GB adsorbs on Ui0-66 at room temperature intact, and onto several different adsorption sites (ideal Zr site, ZrOH site,

and the defect site) in increasing order of binding energy. The geometrical orientation of GB affects the CH modes in

the IR spectrum to help identify the exact binding orientation. Additionally, GB decomposes on Ui0-66 after heating

the surface above 340K with no H20 present. Future work includes looking at GB interactions with MOFs with water

present, and with isotopically-labeled GB and H20 to elucidate reaction mechanisms.
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