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Quantum Simulation
to Benchmark

Quantum Hardware
A long-held promise of quantum computers is the effi-
cient simulation of physical systems. While large sys-
tems are out of the reach of extant hardware, can
smaller test systems provide useful benchmarks?

Here, we perform a sirnulation of molecular hydrogen
on hardware provided by the IBM Quantum Experi-
ence, in particular calculating the eigenenergies of the
system by estimating the phase of the time evolution
operator. We examine the use of robust phase esti-
mation to assess potential advantages on noisy hard-
ware.

Basics of Quantum Simulation

To perform time evolution U = we Trotterize.

To perforn the preparation and measurements, we pre-
compute the required quantum circuits (by exact diago-
nalization of the Hamiltonian).

Extensibility to larger chemicals will require an-
other technique, e.g., adiabatic state preparation
or VQE.

How does it work?

Linear combinations of the
eigenstates and E1):

4x) = ±1Ei) and ±3,)

And perform two kinds of experiments:

PN x = 1K+X
What is RPE?

• Deterrnines the relative
phase 61 induced by a unitary
U between eigenvectors
and Ej).

• Uses no controlled-U gates

• Naturally robust to errors

• Exhibits Heisenberg scaling

We have circuits to (al prepare (and measure) a linear
superposition of energy eigenstates and (ID) evolve a
state for some time t,
Run these per the Robust Phase Estimation algorithm.

Molecular H2 energy vs nuclear separation (exact and quantum hardware)
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Estimate 61

If Pi x and PLy were known exactly, we would get
an exact value for 61. But statistical error
scales as v-1/2, where is the number of
trials.

Ej

= -
2 
(1 + cos Ne

2

1
+y

2 
(1 + sin1110)

Can we do better?

By increasing N; the effect of uncertainty
in P affects the estirnates of less.

However, there are multiple 6 consistent
for any observed PN.x and PNy for N > 1.

Robust Phase Estimation uses iterative
estimates for various values of N to
find e. (We choose Nk = 2k.)

Robust Ph
timation

Robustness to noise

Of the Nk consistent solutions at
generation k, RPE chooses 19 k clos-
est to 61k-1. Is this the same as
errrect r the estimate closest to the

true angle 6(t)?

In other words:

Q: HOW much noise can RPE
tolerate?

A: Errors in PN can be as large 

as (1 + (tan lirt) 1)-1 /2 r-z-, 31,6%.

Even for a virtual H2 molecule that uses
only 2 qubits, implementing U uses 3
controlled-X gates. This precludes N > 30
because of hardware fidelities.

Can anything be done?

In order to extrapolate to better results
that will ostensibly become avaiiable, we
have pre-compiled UNK to 3 CX gates.

Run on IBM Q "Vigo"

What do vve get?

Using this pre-compiling, we find all en-
ergy gaps for H2 at various separations.
By using our knowledge of Tr [H], we can
get the absolute energy scale (see future
work: this doesn't scale).

E/Can we expla
•
n

the error?

Future Work
This same approach can in principle be generalized. The next sim-
plest case to consider would be H3, which (as a function of atomic
separations) has a conical intersection of the ground state energy
and first excited energy. However, generically implementing the time
evolution U = e itH requires order 102 CNOT gates [5], leaving such a
calculation in the realm of simulation.
Given the techniques developed here, requirements on qubit gate
fidelities and cross-talk can be made. More generally, we plan to
develop generalized requirements as chemical size scales up, gener-
ically providing minimum requirements for particular applications.
The code that implements the RPE and analysis is being released as
part of the pyGSTi Python package.
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Subsequent 61:

Solve for the N k 19's con-
sistent with PNk.)( and Pnik,Y.

Careful choice at each gen-
eration k of the number of
trials performed, vic, and the
number of applications of U,
Nk, will acheive Heisenberg
scaling.

First 0 estimate:

Just solve for O.

Second 0 estimate:

Solve for the two O's consistent
with P2.x and P24,.

One is rejected because it is
very different from the first
\estimate. Accept the other.

Optionally, check if all previ-
ous estimates are consistent
with the new estimate.
Accept the new value closest to the
last estimate. Reject all others.

9111.1.1•1010.

The following are equivalent:

• The error of the measured 
ekcorrect is

small enough:

incorrect 6,(t),
I 3Aik

• ek 'A strongly converges" to 61(t):

- 0("1 n
3Nk

• The ek estimates are "consistent:"

- ek I< 3N, + 3Nk
(40

Eq. (1 depends only on experi-
mental data! It tells you if you can
trust your phase estimate.
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Distribution of estimated 0 (noisy simulation)
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Failing generation (noisy simulation)
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The constituent error models provided by IBM for their
quantum hardware (Qiskit basic_device_noise_modell in-
coporates gate durations, thermal relaxation and SPAM
errors, from calibration data. For the tested platforms,
(Vigo, Yorktown, Tenerife, Ourensel this model is inade-
quate to describe the observed spreads in energy esti-
mates (spread for Vigo is shown below). Moreover, merely
increasing the decoherence rate (upvvard from the ob-
served Tl = 124.9 ps and T2 — 45.2 p.$) in the system inad-
equately describes the performance of the protocol: there
are no observed consistency check failures (see Eq. (011
from the hardware, but producing qualitatively equiva-
lent error distributions with only decoherent noise neces-
sitates such failures.

Error in Energy Estimate

o 1 2 3 4

k (generation)
6

— (2k1,12)-'
• IBM Q
- ideal Sirnulation

• Noisy simulation (calibration)
▪ Mean
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