INCA: In-Network Compute

Assistance

Whit Schonbein

Ryan E. Grant
Matthew G F Dosanjh Sandia National Laboratories

Dorian

Arnold

Sandia National Laboratories, UNM

Sandia National Laboratories, UNM

Emory University

% EMORY

UNIVERSITY

This paper describes objective technical results and analysis. Any subjective views or opinions that might be expressed
in the paper do not necessarily represent the views of the U.S. Department of Energy or the United States Government.

1

THE UNIVERSITY OF

NEW MEXICO

SAND2019- 14284C

Sandia National Laboratories is a multimission
laboratory managed and operated by National
Technology & Engineering Solutions of Sandia,
LLC, a wholly owned subsidiary of Honeywell
International Inc., for the U.S. Department of
Energy’s National Nuclear Security
Administration under contract DE-NA0003525.

2 | A Case for In-Network Computing L I

SmartNICs everywhere
|dle network = Idle computational resources

An opportunity to harvest computational resources

3 | How It’s Done Today

Two approaches to SmartNICs:

Bump-in-the-wire

Host
Interface

2.5GHz CPU |
250 Million Messages / Second

|0 Instructions / Message

How It’s Done Today

Two approaches to SmartNICs:

Bump-in-the-wire
Compute outside message processing pipeline

Host
Interface

Rx—

How INCA is Different

Bump-in-the-wire Outside the Pipeline

Deadline

Deadline-Free

How INCA is Different

Deadline

Deadline-Free

Bump-in-the-wire

Myrinet
Quadrics
SPiN (SC’17)
Atos BXI
Broadcom Stingray

Azure

Outside the Pipeline

How INCA is Different

Deadline

Deadline-Free

Bump-in-the-wire

Myrinet
Quadrics
SPiN (SC’17)
Atos BXI
Broadcom Stingray

Azure

Outside the Pipeline

Mellanox Bluefield

8 How INCA is Different

Bump-in-the-wire Outside the Pipeline

Myrinet
Quadrics i
SPiN (SC’17)

Deadline Atos BX|

Broadcom Stingray

Azure

Deadline-Free Mellanox Bluefield

Leverage bump-in-the-wire capabilities |
Enable execution of kernels of arbitrary length .

)

Why Use INCA?

With INCA:

Accelerate scientific applications

Enable novel types of distributed applications

Technical Challenges and
Desired Features

Il | Technical Challenges and Desired Features L I

Support kernels of arbitrary length

Technical Challenges and Desired Features

Support kernels of arbitrary length

Forward compatibility

2.5GHz CPU 2.5GHz CPU
250 Million Messages / Second » 350 Million Messages / Second
|0 Instructions / Message /.14 Instructions / Message

|
13

Technical Challenges and Desired Features

*Support kernels of arbitrary length
* Forward compatibility

*Host-independent progress

14

Technical Challenges and Desired Features I |

=
*Support kernels of arbitrary length

* Forward compatibility '
*Host-independent progress ‘

*Leverage existing hardware

.

I5 © Technical Challenges and Desired Features k]

|
*Support kernels of arbitrary length I
* Forward compatibility
*Host-independent progress ‘
*Leverage existing hardware

* Ease of use

.

What Is INCA?

El

INCA is:
A model of computation %
A programming ecosystem:
High and low level languages for expressing kernels %
Compiler
Interpreter
A network programming API reference implementation

8 | The INCA Model of Computation H |

Motivated by the challenge of leveraging existing hardware

The INCA Model of Computation

From
Network ‘ FIFO I

Trigger
Logic

To .
< Tx DMA E <
Network FIFC * neme

|. Triggered Operations 2. Message Matching ~ 3.Atomic operations

00RJIOUT 1SOT]

Adapted from: Underwood et al.,“Enabling Flexible Collective Communication Offload with Triggered Operations,’, 201 |

20

The INCA Model of Computation

| . Triggered operation 2. Unique matching element 3.Atomic unit performs
generates message specifies buffer containing specified operation and
containing | argument. 2"d argument and atomic. stores result.

Triggered : Atomic
: Match :
I Operation - atching - Operation .

Program:A list of tuples of triggered operations, matching
entries, and atomic operations, ordered by thresholds,
sharing the same counter.

Turing complete

21 | Complexity is Easy, Simplicity is Hard

Minimal modifications required for INCA kernel execution

Triggered : Atomic
I Operation - Matehng - Operation .

Triggering conditions Matching entries New atomic

22 | INCA Ecosystem L]

3

Q-Compiler

3

23

INCA Kernels

Algorithm 1 INCA-Q Dot Product

-1 =0
- while 1 < 50 do

1
2
3
4
5

Algorithm 2 INCA-A Dot Product

1 PUTL i, O

2 PUTL 7y, i

3 LT To, To, 50

4 BLEZ ro. 10

5 PUTL 7y, Ali]

6 MUL ™, T, B[l]
7 ADD c, c, rq

S ADD 1, 1, 1

9 JMP 2

10 END

24 Technical Challenges and Desired Features || I

Support kernels of arbitrary length
Deadline-free

Forward-compatible
Increasing network speeds = faster execution

Host-independent progress
Instruction processing pipeline fully offloaded

Leverages existing hardware

Ease of use

25 Potential Pitfalls . I

|dle host processor
Fast handoff

INCA-induced network endpoint congestion
It’s free work

Slow message rates = slow INCA execution speed
It’s free work |

Fes

gy g1 i 000

1 ™
| .

27 | Evaluation L I

How fast can INCA kernels execute!

How can INCA help accelerate applications!?

Z

28 | INCA Kernel Execution N |

*How fast can INCA kernels execute!

*How can INCA help accelerate applications!?

29

INCA Kernel Execution

INCA-Q

3

Q- Compller

30 INCA Kernel Execution

Kernels
Matrix transposition
Filter
Matrix unpack
Convolution
Linear interpolation
Hadamard product
Dot product
Matrix multiplication

|
|

31 INCA Kernel Execution

*Kernels
o Matrix transposition
o Filter
o Matrix unpack
> Convolution

oLinear interpolation
> Hadamard product

> Matrix multiplication .

32 INCA Kernel Execution

Model Parameters
200 million messages / second
Scratchpad scenario:
|MiB NIC-local memory
| ns access time

Negligible loopback latency
Vary payloads from [28B to 8192B

Instruction counts: 132 to 271652
~77% are greater than 500 instructions

33 | INCA Kernel Execution — Matrix Multiplication

Payload

Scenario

128B

256B

512B

1024B

2048B

4096B

8192B

Average Speedup wrt
scratchpad

34 | INCA Kernel Execution — Matrix Multiplication

Payload

Scenario

scratchpad

128B

7.89

256B | 512B | 1024B | 2048B | 4096B | 8192B

30.61 5391 213.88 400.25 [597.64 3088.59

8KiB on 2.3GHz Hilvell CPU
139.49 — 10.56 microsecs

All times microseconds

Average Speedup wrt
scratchpad

35 | INCA Kernel Execution — Matrix Multiplication
Payload
Scenario | 128B | 256B | 512B | 1024B | 2048B | 4096B | 81928 | “\Verage Speedup wrt

scratchpad

scratchpad
400Gb/s

7.89

30.61

53.91

213.88 400.25

1597.64 3088.59

1067.50

All times microseconds

scratchpad

36 | INCA Kernel Execution — Matrix Multiplication

Payload

Scenario

scratchpad

scratchpad
400Gb/s

scratchpad
1000Gb/s

128B

7.89

256B

512B | 1024B | 2048B | 4096B | 8192B

5391 213.88 400.25 1597.64 3088.59

1067.50

650.24

8KiB on 2.3G qaswell CPU
139.49 — 10.56 microsecs

All times microseconds

Average Speedup wrt
scratchpad

37 | INCA Kernel Execution — Matrix Multiplication

Payload

Scenario

scratchpad

128B

7.89

256B

30.61

512B

53.91

1024B | 2048B | 4096B | 8192B

213.88 400.25 [597.64 3088.59

All times microseconds

Average Speedup wrt
scratchpad

38 | INCA Kernel Execution — Matrix Multiplication

Payload

Scenario

scratchpad

parallel

128B

7.89
.13

256B

Average Speedup wrt

512B | 1024B | 2048B | 4096B | 8192B
scratchpad

5391 213.88 400.25 1597.64 3088.59
707 2659 5292 20886 417.68

All times microseconds

39 | INCA Kernel Execution — Matrix Multiplication

Payload

Scenario

scratchpad

parallel

advanced-
parallel

128B

256B

512B | 1024B | 2048B | 4096B | 8192B

213.88 400.25 [597.64 3088.59
2659 5292 20886 417.68

5.89 782 3129 4742

8KiB on 2.3G Jaswell CPU
139.49 — 10.56 microsecs

All times microseconds

Average Speedup wrt
scratchpad

4 | INCA Kernel Execution H |

INCA runtimes can be significantly slower than CPU runtimes.
However:

We get this work for free

Kernel runtimes improve as network speeds increase

There are ample opportunities for additional optimizations

Z

41 Application Acceleration k| I

*How fast can INCA kernels execute!

*How can INCA help accelerate applications?

42 | Application Acceleration

(Mini)Apps
MiniAMR
MiniMD
I =
LAMMPS

43 | Application Acceleration |] I

|dentify regions of code as candidates for INCA offloading.
Time those candidates as well as the regions they appear in.

Calculate ideal speedup assuming 100% overlap.

44 | Application Acceleration

MiniAMR | MiniMD | MiniFE | LAMMPS

Potential speedup without

| 1% 2.98% | 1.50%
code refactor

45

Application Acceleration

Potential speedup without
code refactor

Potential speedup with
code refactor

MiniAMR

MiniMD | MiniFE
I 1% 2.98%

37.20% 25.70%

LAMMPS

1 1.50%

28.90%

Fes

gy g1 i 000

1 ™
| .

47 Conclusion . I

INCA harvests idle network resources
Deadline-free, host-independent, kernel execution
Requires modest modifications to existing hardware
INCA ecosystem —> ease-of-use

Accelerate application performance

Thank You

'l THE UNIVERSITY OF 40 EMORY

Advanced Simulation and Computing Program funded by the National Nuclear Security Administration

Fes

gy g1 i 000

1 ™
| .

50

Application run details

MiniFE 2.1.0

MiniMD 2.0

MiniAMR |.0

LAMMPS Stable Release

Compiled: Intel 19.0.3.199 and OpenMPI 3.0.

System: dual socket 2.1 GHz Intel Broadwell E5-2695 v4, |18
cores per processor, |28 GB of RAM per node

Networlk: Intel Omni-Path Network.

51

Haswell 2.3GHz kernel runtimes (microsecs), -O0

128B | 256B | 512B | 1024B | 2048B | 4096B | 8192B

unpack 0.90

convolution 4.28
lerp 2.22
hadamard 0.55
dp 0.61

mm 4.69

.74 3.51 7.23
550 1243 1751
599 13.68 28.15
096 1.76 4.5]
.13 223 472
17.66 36.79 139.49

52

Haswell 2.3GHz kernel runtimes (microsecs), -O2

128B | 256B | 512B | 1024B | 2048B | 4096B | 8192B
unpack
convolution
lerp

hadamard

dp

mm I

53 | All kernel runtimes (from SC paper)

Payload size Average speedup Average speedup

128B 256B 512B 1024B 2048B 4096B 8192B wrt base wrt scratchpad

Kernel Optimization

base 42.16 83.08 142.6 283.96 522.04 1042.84 1995.16
scratchpad 1.52 3.0 5.14 10.24 18.81 37.58 71.89 27.74X

filter base 65.98 13036 260.23 525.57 1046.01 2091.8 4190.72
scratchpad 2.34 4.58 9.12 18.56 36.88 73.88 147.81 28.36X

base 96.51 19091 379.71 757.31 1512.51 3022.91 6043.71
scratchpad 2.8 5.54 11.01 21.96 43.84 87.62 175.17 34.48%

matrix-transpose

matrix-unpack

base 328.48 657.96 1274.28 2549.56 5014.84 10030.68 19891.8
scratchpad 9.26 18.52 35.45 70.91 138.62 277.24 548.09 35.94x

convolution

base 301.31 617.15 1248.83 2512.19 5038.91 10092.35 20199.23
scratchpad 9.38 19.18 38.8 78.03 156.5 313.42 627.28 32.18X

base 56.08 110.92 198.28 39532 74476 1488.28 2886.04
scratchpad 1.89 3.73 6.61 13.18 24.7 49.36 95.44 30.0%

hadamard-product clobber 1.54 3.03 5.21 10.37 19.07 38.09 72.91 38.13X 1.27X
parallel 0.02 0.03 0.05 0.09 0.18 0.35 0.69 3918.83X 116.99%
parallel-clobber 0.01 0.02 0.03 0.05 0.09 0.18 0.35 7208.41X 240.11x

linear-interpolation

base 4892 96.6 19196 382.68 764.12 1527.0 3052.76

scratchpad 1.50 2.96 5.87 11.69 23.34 46.64 93.23 32.70X
dot-product clobber 1.32 2.60 5.17 10.29 20.52 41.01 81.97 37.18X

parallel 1.16 2.25 4.45 8.84 17.63 35.21 70.37 43.09%

parallel-clobber 1.15 2.24 4.42 8.8 17.54 35.04 70.03 43.33%

advanced-parallel 0.04 0.05 0.08 0.12 0.21 0.42 0.84 2807.45%

base 247.76 965.0 1727.88 6863.16 12966.2 51771.8 100596.12

scratchpad 7.89 30.61 5391 213.88 400.25 1597.64 3088.59 32.06X
matrix-multiplication parallel 1.13 3.61 7.07 26.59 52.92 208.86 417.68 246.12X

parallel-clobber 1.08 3.48 6.86 25.84 51.52 203.24 406.43 254.01x

advanced-parallel 0.29 1.1 1.5 5.89 7.82 31.29 47.42 1354.69%

54 | Kernel instruction counts (in SC paper)

Payload size
Kernel 128B | 256B | 512B | 1024B | 2048B | 409¢B | 81928
vector dot product 1028 2052 4100 8196
matrix transpose 916 | 684 3364 6436
hadamard product 1172 2196 4388 8484
filter | 647 3271 6555 13112

matrix unpack 1926 3846 7686 15366

matrix multiplication 18836 35220 140580 271652
convolution 6176 12064 24128 47680 I
linear interpolation 6874 13786 27610 55258

55 | Full potential speedup table

MiniAMR
Runtime
Communication
INCA Target

Overlap Target

Potential speedup without
refactor
Potential speedup with
refactor

MiniMD
43.1
6.98
4.73
34.3

| 1%

37.20%

MiniFE

.|
22.3

2.98%

25.70%

LAMMPS
39.2
6.23

3.8
21.5

1 1.50%

28.90%

56 | Interrupting INCA (I)

-

speedup

>
S
04'5(
-
-
$-4

<3

57

Interrupting INCA (II)

58 | INCA Scratchpad architecture

1MiB 1ns SRAM Scratchpad

From FIFO J Rx DMA Engine
Network L

Portals Unit

Portals

Match/Event
Offload

N A

y Y

Atomic 4)[Trigger

Q0BILIDIUT ISOH

To
Network

59

The extended LogGP model

Triggered : Atomic
Operation Matching Operation
L
(D (2 3

Time to execute instruction=L+g+ o+ m

Fes

gy g1 i 000

1 ™
| .

