
INCA: In-Network Compute
Assistance

Whit Schonbein
Ryan E. Grant
Matthew G. F. Dosanjh
Dorian Arnold

Sandia National Laboratories, UNM

Sandia National Laboratories, UNM

Sandia National Laboratories

Emory University

EMORY
UNIVERSITY lie THE UNIVERSITY OF

NEW MEXICO

Sandia National Laboratories is a multimission
laboratory managed and operated by National
Technology & Engineering Solutions of Sandia,
LLC, a wholly owned subsidiary of Honeywell
International inc., for the U.S. Department of

Energys National Nuclear Security
Administration under contract DE-NA0003525.

SAND2019-14284C

This paper describes objective technical results and analysis. Any subjective views or opinions that might be expressed
in the paper do not necessarily represent the views of the U.S. Department of Energy or the United States Government.

2 A Case for In-Network Computing

SmartNlCs everywhere

Idle network = Idle computational resources

An opportunity to harvest computational resources

•
MI

3 How It's Done Today

Two approaches to SmartNlCs:

Bump-in-the-wire

Rx

2.5GHz CPU
250 Million Messages / Second
10 Instructions / Message ,<

Host
Interface

•

4 How It's Done Today

Two approaches to SmartNlCs:

0 Bump-in-,he-wire

Compute outside message processing pipeline

Rx
o-

Host
Interface

•

How INCA is Different

Bump-in-the-wire Outside the Pipeline

Deadline

Deadline-Free

6 How INCA is Different

Deadline

Deadline-Free

Bump-in-the-wire Outside the Pipeline

Myrinet
Quadrics

SPiN (SC' 17)
Atos BXI

Broadcom Stingray
Azure

7 How INCA is Different

Deadline

Bump-in-the-wire Outside the Pipeline

Myrinet
Quadrics

SPiN (SC'17)
Atos BXI

Broadcom Stingray
Azure

Deadline-Free Mellanox Bluefield

8 How INCA is Different

Deadline

Deadline-Free

I Bump-in-the-wire Outside the Pipeline

Myrinet
Quadrics

SPiN (SC'17)
Atos BXI

Broadcom Stingray
Azure

INCA Mellanox Bluefield

Leverage bump-in-the-wire capabilities

Enable execution of kernels of arbitrary length

•
MI

9 Why Use INCA?

With INCA:

Accelerate scientific applications

Enable novel types of distributed applications

■

Technical Challenges and
Desired Features

Technical Challenges and Desired Features

' Support kernels of arbitrary length

•

I 2 Technical Challenges and Desired Features

•Support kernels of arbitrary length

Forward compatibility

2.5GHz CPU
250 Million Messages / Second
10 Instructions / Message

2.5GHz CPU
350 Million Messages / Second
7.14 Instructions / Message

•

I 3 Technical Challenges and Desired Features

•Support kernels of arbitrary length

• Forward compatibility

Host-independent progress

■

I 4 Technical Challenges and Desired Features

•Support kernels of arbitrary length

• Forward compatibility

- I-lost-independent progress

Leverage existing hardware

•

I 5 Technical Challenges and Desired Features

•Support kernels of arbitrary length

• Forward compatibility

•Host-independent progress

• Leverage existing hardware

Ease of use

•

INCA: In-Network Compute Assistance

1 7 What Is INCA?

INCA is:

A model of computation *

A programming ecosystem:

High and low level languages for expressing kernel
A

Compiler

Interpreter

A network programmingAPl reference implementation

•

I 8 The INCA Model of Computation

Motivated by the challenge of leveraging existing hardware

•

19 The INCA Model of Computation

From
Network

To <
Network

FIFO

r -•

FIFO

Data

CD
P
S2-,
CD
1-t
cn

.

FIFO

 1FIFO.

>

rAtornicl
Unit

r

Rx DMA Engine

r Trigger 1
L Logic

/

Tx DMA Engine

FIFO

r

i
M
I
Z
U

I .Triggered Operations 2. Message Matching 3.Atomic operations

MI

Adapted from: Underwood et al.,"Enabling Flexible Collective Communication Offload with Triggered Operations,", 20 l l

20 The INCA Model of Computation

I .Triggered operation 2. Unique matching element
generates message specifies buffer containing

containing I St argument. 2nd argument and atomic.

3.Atomic unit performs
specified operation and

stores result.

•
MI

-*-->
Triggered
Operation

Matching
Atomic

Operation ++

Program:A list of tuples of triggered operations, matching
entries, and atomic operations, ordered by thresholds,
sharing the same counter.

Turing complete

2 I Complexity is Easy, Simplicity is Hard

Minimal modifications required for INCA kernel execution

•

-*-->
Triggered
Operation

Matching
Atomic

Operation
++

W

-- --
Triggering conditions Matching entries New atomic

22 INCA Ecosystem

7

,

INCA-Q

./
Q-Compiler

r

L

/

INCA-A

J

II

4*

23 INCA Kernels

Algorithm 1 INCA-Q Dot Product

1: i = 0

2: while i < 50 do {

I 3 c = c + (AM * B [i]) 1

4: i = i + 1

5:}

Algorithm 2 INCA-A Dot Product

>

1 PUTL i, 0

2 PUTL ro, i
3 LT rol r0, 50

4 BLEZ rn, 10

5 PUTL ri, A[i]

6 MUL ri, ri, B[i]

7 ADD c, c, r1

8 ADD i, i, 1

9 JMP 2

10 END

•
MI

24 Technical Challenges and Desired Features

Support kernels of arbitrary length
Deadline-free

• Forward-compatible
Increasing network speeds = faster execution

• Host-independent progress
Instruction processing pipeline fully offloaded

Leverages existing hardware

• Ease of use

•
MI

25 Potential Pitfalls

MI
Idle host processor

o Fast handoff

INCA-induced network endpoint congestion

It's free work

•Slow message rates = slow INCA execution speed

0 It's free work

Evaluation

27 Evaluation

How fast can INCA kernels execute?

How can INCA help accelerate applications?

•

28 INCA Kernel Execution

MI
How fast can INCA kernels execute?

• How can INCA help accelerate applications?

29 INCA Kernel Execution

r

r

INCA-Q

m

J

\/
Q-Compiler

1

r

INCA-A

J

7

> Interpreter

r

> Model

 J

1

4.*

30 INCA Kernel Execution

• Kernels

Matrix transposition

Filter

Matrix unpack

Convolution

Linear interpolation

Hadamard product

Dot product

Matrix multiplication

•

3 1 INCA Kernel Execution

• Kernels

O Matrix transposition

O Filter

O Matrix unpack

O Convolution

O Linear interpolation

O Hadamard product-

O Dro- ̂ v.'. --4-

Matrix multiplication

•

32 INCA Kernel Execution

Model Parameters

200 million messages / second

Scratchpad scenario:

I MiB NIC-local memory

I ns access time

Negligible loopback latency

Vary payloads from 128B to 8I92B

Instruction counts: 132 to 271652

•-•77% are greater than 500 instructions

•
MI

33 INCA Kernel Execution — Matrix Multiplication

Payload

Scenario 128B 256B 512B 1024B 2048B 4096B 8192B
Average Speedup wrt

scratchiad

•
MI

34 INCA Kernel Execution — Matrix Multiplication

Scenario

Payload

128B 256B 512B 1024B 2048B 4096B 8192B
Average Speedup wrt

scratchiad

scratchpad 7.89 30.61 53.91 213.88 400.25 1597.64 3088.59

8KiB on 2.3GHz irll CPU
139.49 — 10.56 microsecs

All times microseconds

•
MI

35 INCA Kernel Execution — Matrix Multiplication

Scenario

Payload

128B 256B 512B 1024B 2048B 4096B 8192B
Average Speedup wrt

scratchiad

scratchpad 7.89 30.61 53.91 213.88 400.25 1597.64 3088.59

scratchpad
400Gb/s

1067.50 2.89x

All times microseconds

•
MI

36 INCA Kernel Execution — Matrix Multiplication

Scenario

Payload

128B 256B 512B 1024B 2048B 4096B 8192B
Average Speedup wrt

scratchiad

scratchpad

scratchpad
400Gb/s
scratchpad
1000G b/s

7.89 30.61 53.91 213.88 400.25 1597.64 3088.59

1067.50

650.24 4.75x

8KiB on 2.3G aswell CPU
139.49 — 10.56 microsecs
IF IMP
All times microseconds

2.89x

•
MI

37 INCA Kernel Execution — Matrix Multiplication

Scenario

Payload

128B 256B 512B 1024B

scratchpad 7.89 30.61 53.91 213.88 400.25

4096B 8192B

1597.64 3088.59

Average Speedup wrt
scratchiad

All times microseconds

•
MI

38 INCA Kernel Execution — Matrix Multiplication

Scenario

Payload

128Br -1 1024B

scratchpad 7.89 30.61 53.91 213.88 400.25

parallel 1.13 3.61 7.07 26.59 52.92

1597.64 3088.59

208.86 417.68

Average Speedup wrt
scratch Dad

7.68x

All times microseconds

•
MI

39 INCA Kernel Execution - Matrix Multiplication

Payload

Scenario 128B
171

1024B
Average Speedup wrt

scratch Dad

scratchpad

parallel

advanced-
parallel

7.89 30.61 53.91 213.88 400.25

1.13 3.61 7.07 26.59 52.92

0.29 1.10 1.50 5.89 7.82

1597.64 3088.59

208.86 417.68

31.29 47.42

8KiB on 2.3G1-' iaswell CPU
139.49 - 10.56 microsecs

7.68x

42.09x

•
MI

40 INCA Kernel Execution

INCA runtimes can be significantly slower than CPU runtimes.

However:

We get this work for free

Kernel runtimes improve as network speeds increase

There are ample opportunities for additional optimizations

•

4 I Application Acceleration

•How fast can INCA !Kernels execute?

How can INCA help accelerate applications?

•

42 Application Acceleration

• (Mini)Apps

0 MiniAMR

0 MiniMD

MiniFE

LAM MPS

43 Application Acceleration

Identify regions of code as candidates for INCA offloading.

Time those candidates as well as the regions they appear in.

Calculate ideal speedup assuming 100% overlap.

•

44 Application Acceleration

MiniAMR MiniMD MiniFE LAMMPS

Potential speedup without
code refactor

I I % 2.98% I I .50%

•
MI

45 Application Acceleration

MiniAMR MiniMD MiniFE LAMMPS

Potential speedup without
code refactor

Potential speedup with
code refactor

l l% 2.98% I 1.50%

26% 37.20% 25.70% 28.90%

■

Conclusion

47 Conclusion

INCA harvests idle network resources

Deadline-free, host-independent, kernel execution

Requires modest modifications to existing hardware

INCA ecosystem 4 ease-of-use

Accelerate application performance

•

Thank You

(1/411(AS

wr.11

Nation.al iiriiektar Sec arigy itIntorgs fraliorx

;Figoillukozt EMORY
UNIVERSITY

This work was funded through the Computational Systems and Software Environment sub-program of the
Advanced Simulation and Computing Program funded by the National Nuclear Security Administration

Extras

50 Application run details

MI
MiniFE 2.1.0

•MiniMD 2.0
MiniAMR 1.0
LAMMPS Stable Release
• Compiled: Intel 19.0.3.199 and OpenMPl 3.0.
•System: dual socket 2.1 GHz Intel Broadwell E5-2695 v4, 18
cores per processor, 128 GB of RAM per node
•Network: Intel Omni-Path Network.

5 I Haswell 2.3GHz kernel runtimes (microsecs), -00

128B 256B 512B 1024B 2048B 4096B 8192B

unpack 0.17 0.28 0.48 0.90 1.74 3.51 7.23

convolution 0.72 1.51 1.89 4.28 5.50 12.43 17.51

lerp 0.35 0.59 1.15 2.22 5.99 13.68 28.15

hadamard 0.16 0.23 0.33 0.55 0.96 1.76 4.51

dp 0.13 0.20 0.33 0.61 1.13 2.23 4.72

mm 0.45 0.77 2.38 4.69 17.66 36.79 139.49

•
MI

52 Haswell 2.3GHz kernel runtimes (microsecs), -02

128B 256B 512B 1024B 2048B 4096B 8192B

unpack 0.12 0.17 0.27 0.47 0.86 1.68 3.27

convolution 0.29 0.38 0.49 0.76 1.14 2.01 3.41

lerp 0.19 0.27 0.45 0.75 3.09 7.55 16.20

hadamard 0.09 0.11 0.13 0.16 0.20 0.29 0.73

dp 0.05 0.05 0.05 0.05 0.05 0.05 0.05

mm 0.20 0.27 0.44 0.75 1.95 3.81 10.56

•
MI

53 All kernel runtimes (from SC paper)

Kernel Optimization
Payload size Average speedup

wrt base

Average speedup

wrt scratchpad128B 256B 512B 1024B 2048B 4096B 8192B

matrix-transpose base 42.16 83.08 142.6 283.96 522.04 1042.84 1995.16

scratchpad 1.52 3.0 5.14 10.24 18.81 37.58 71.89 27.74x

filter base 65.98 130.36 260.23 525.57 1046.01 2091.8 4190.72

scratchpad 2.34 4.58 9.12 18.56 36.88 73.88 147.81 28.36x

matrix-unpack base 96.51 190.91 379.71 757.31 1512.51 3022.91 6043.71

scratchpad 2.8 5.54 11.01 21.96 43.84 87.62 175.17 34.48x

convolution base 328.48 657.96 1274.28 2549.56 5014.84 10030.68 19891.8

scratchpad 9.26 18.52 35.45 70.91 138.62 277.24 548.09 35.94x

linear-interpolation base 301.31 617.15 1248.83 2512.19 5038.91 10092.35 20199.23

scratchpad 9.38 19.18 38.8 78.03 156.5 313.42 627.28 32.18x

base 56.08 110.92 198.28 395.32 744.76 1488.28 2886.04

scratchpad 1.89 3.73 6.61 13.18 24.7 49.36 95.44 30.0x
hadamard-product clobber 1.54 3.03 5.21 10.37 19.07 38.09 72.91 38.13x 1.27x

parallel 0.02 0.03 0.05 0.09 0.18 0.35 0.69 3918.83x 116.99x

parallel-clobber 0.01 0.02 0.03 0.05 0.09 0.18 0.35 7208.41x 240.11x

base 48.92 96.6 191.96 382.68 764.12 1527.0 3052.76

scratchpad 1.50 2.96 5.87 11.69 23.34 46.64 93.23 32.70x
dot-product clobber 1.32 2.60 5.17 10.29 20.52 41.01 81.97 37.18x 1.14x

parallel 1.16 2.25 4.45 8.84 17.63 35.21 70.37 43.09x 1.32x

parallel-clobber 1.15 2.24 4.42 8.8 17.54 35.04 70.03 43.33x 1.33x

advanced-parallel 0.04 0.05 0.08 0.12 0.21 0.42 0.84 2807.45x 85.81x

base 247.76 965.0 1727.88 6863.16 12966.2 51771.8 100596.12

scratchpad 7.89 30.61 53.91 213.88 400.25 1597.64 3088.59 32.06x
matrix-multiplication parallel 1.13 3.61 7.07 26.59 52.92 208.86 417.68 246.12x 7.68x

parallel-clobber 1.08 3.48 6.86 25.84 51.52 203.24 406.43 254.01x 7.92x

advanced-parallel 0.29 1.1 1.5 5.89 7.82 31.29 47.42 1354.69x 42.09x

•
MI

54 Kernel instruction counts (in SC paper)

IN I

vector dot product
matrix transpose
hadamard product

filter
matrix unpack

matrix multiplication
convolution

linear interpolation

Payload size

132
136
168
208
246
696
808
826

256B
260
268
332
406
486
2700
1616
1690

5I2B
516
460
588
808
966
4748
3088
3418

1024B
1028
916
1172
1647
1926
18836
6176
6874

2048B
2052
1684
2196
3271
3846
35220
12064
13786

4100
3364
4388
6555
7686
140580
24128
27610

8192B
8196
6436
8484
13112
15366
271652
47680
55258

MI

1

55 Full potential speedup table

MiniAMR MiniMD MiniFE LAMMPS

Runtime I 74

Communication 52.8

INCA Target 45.4

Overlap Target 76.3

Potential speedup without
refactor

Potential speedup with
refactor

43.1 37 39.2

6.98 4.36 6.23

4.73 1.1 3.8

34.3 22.3 21.5

I I% 2.98% 11.50%

26% 37.20% 25.70% 28.90%

■

56 Interrupting INCA (I)

a) w

tDa — tIs tan

speedup

tIe

Ie

57 Interrupting INCA (II)

Main Memory
,

Bus

NIC

CPU

Cache
Main Memory

CPU

Cache)

Bus

NIC

•
MI

58 INCA Scratchpad architecture

1MiB lns SRAM Scratchpad

From Data
FIFO FIFO Rx DMA Engine

Network

(1)

V

Portals Unit
Portals

FIFO
Match/Event

Offload
FIFO

Commands
<-

INCA
LPQ Atomic Trigger

Unit Logic

ALU

To
Network

FIFO Tx DMA Engine

O
D
U
J
I
D
I
L
I
I
 4
S
0
1
1

59 The extended LogGP model

t
In
1

•
MI

-0->
Triggered
Operation

]
L

Matching

<

Atomic
Operation

++

o

Time to execute instruction = L+g+o+m

The End

