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2 Outline

Once-through cycle in the U.S. and its waste burden

Considerations for recycling in the U.S.

Observations of various fuel cycle options studies with
respect to waste management

How alternative nuclear fuel cycles might affect deep
geologic waste disposal

How existing safety assessments inform conclusions
about waste management and disposal (examples from
multiple programs)

■ Conclusions
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Once-Through vs. Recycle (from 2011 MIT Study)40

Once-through open fuel cycle, as in U.S. today
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1 Current SNF Disposition for the Once-Through4 Cycle in the U.S.: The Reality

Temporary Storage at 75 commercial reactor sites in 33 States
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Map of the US commercial SNF storage from Bonano et al. 2018

#

• Pool storage provides cooling and
shielding of radiation

— Primary risks for spent fuel pools are
associated with loss of the cooling and
shielding water

• US pools have reached capacity limits
and utilities have implemented dry
storage

• Some facilities have shutdown and all
that remains is "stranded" fuel at an
independent spent fuel storage
installation (ISFSI):
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Projections
assumes full
license
renewals
and no new
reactor
construction
or disposal
(updated
from Bonano
et al., 2018)
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US Projections of Spent Nuclear Fuel (SNF) and

High Level Radioactive Waste (HLW)
Projected Volumes
of SNF and HLW

in 2048
HLW

DOE 731%65 25,555
SNF 12%

Commercial
SNF

Volumes shown in m3 assuming
constant rate of nuclear power
generation and packaging of
future commercial SNF in
existing designs of dual-

purpose canisters.

• Approx. 80,000 MTHM (metric tons heavy metal) of commercial SNF in storage in the US as of Dec. 2017

• 30,000 MTHM in dry storage at reactor sites, in approximately 2,981 cask/canister systems as of Dec. 2018

• Balance in pools, mainly at reactors

• Approx. 2200 MTHM of SNF generated nationwide each year
• Approximately 160 new dry storage canisters are loaded each year in the US

Sevougian: IAEA Technical Meeting, GCNEP, Bahadurgarh, India, 25-29 November 2019



Could the U.S. Re-Process Existing Spent Nuclear
6 Fuel and Reuse It?
• The US has no commercial reprocessing capability

• Operations at West Valley, New York, ceased in 1972

• Savannah River Site, South Carolina retains the capability to reprocess for
defense purposes

• The US has more than 80,000 metric tons of spent fuel and
generates an additional 2,200 metric tons each year

• The largest reprocessing facility in the world (Sellafield, UK)
had a nominal capacity of 1,200 metric tons per year
- La Hague in France has a capacity of about 1100 metric tons per year

The US would need two or three of the world's largest
reprocessing facilities just to keep up with current discharges
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"98% of the total current U.S. 

inventory by mass can proceed

to permanent disposal without

the need to ensure retrievability

for reuse or research"

(Wagner et al., 2012)*

To date there has not

been a viable

economic model in

which existing spent

fuel gets reprocessed

in the US. 

* This assesslnent does not assume any decision about future fuel cycle options or preclude any
potential options, including those with potential recycling of commercial UNF; since the —2000
MTHM that is generated annually could provide the feedstock needed for deployment of
alternative fuel cycles.... Sevougian: IAEA Technical Meeting, GCNEP, Bahadurgarh, India, 25-29 November 2019
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Yes, but what about various
fuel cycle options studies?
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1 Fuel Cycle Options Studies
8 Decision Analysis with Subject Matter Experts (SMEs)

- Evaluate fuel cycles based on various criteria and metrics, including costs, waste

management, U/Th resource utilization, proliferation, etc.

Many such FC options studies have been conducted using various versions of MCDA:
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Fuel Cycle Options Studies IAEA 2019 INPRO
9 KIND Evaluation of 4 FCs from NEA 2006

• Consider typical waste management criteria: volumes, activities, decay heat

IAEA Nuclear Energy Series
No. NG-T-320

Application of Multi-
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KIND
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reference cycle

• Scheme lb (PWR, PUREX reprocessing,
single recycling of Pu as MOX), representative

of current technology

• Scheme 2a (PWR, PUREX reprocessing,
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closed fuel cycle
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carbide fuel), a fully-closed fuel cycle.
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FIG. 5.59. Three level hierarchy structure.
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Fuel Cycle Options Studies IAEA 2019 INPRO
KIND Evaluation of 4 FCs from NEA 2006

• Consider typical waste management criteria: volumes, activities, decay heat
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EPRI 2010 Advanced Nuclear Fuel Cycles Study
11 — Another Perspective

Four Main Challenges for "Sustainability" of a
Nuclear Fuel Cycle
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EPRI 2010 Advanced Nuclear Fuel Cycles
Economics

"Depending on the fuel cycle chosen and on different assumptions made for the

different unit costs, reactor costs represent between 80 and 90% of electricity costs,

reflecting the high capital cost of constructing nuclear power plants that, alone, can

represent 60% or more of the nuclear electricity costs. As a result, the fuel cycle
choice has a relatively small impact on the overall economics of nuclear power*"

INL 2009 study, where three cycles are evaluated:
• Once-Through Cycle,

• 1-Tier (LWR-UOX + FR) and

• 2-Tier (LWR-UOX + LWR-MOX + FR).
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Breakdown of Nuclear Generation Electricity Cost

(TE3a lir-- Id Cost
Interim Storage,

Reprocessing, Final
Disposal

*However, it is important to note that once the plants are in
operation, recurring fuel cycle costs become much rnore irnportant,
as do operation and maintenance (O&M) costs. This is especially

true for plants whose capital costs have been largely amortized.
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EPRI 2010 Advanced Nuclear Fuel Cycles
13 Waste Management
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Waste Management Main Issues

"High-level waste management is a long-term concern, given the long half-lives of some

radionuclides and the associated period of performance for a repository that spans tens of

thousands to hundreds of thousands of years. The management of decay heat represents a
more useful and objective figure-of-merit compared to waste radiotoxicity, because it more
directly impacts the size, design, and performance of the geological repository. Interim

storage of spent fuel and vitrified wastes is a necessary and important fuel cycle activity that

should be integrated in the context of managing spent fuel/HLW for either geologic disposal

or recycling. Waste management is also an important consideration in terms of public acceptance."
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1 Deep Geological Disposal for SNF and HLW14 Fuel Cycle Considerations

"There has been, for
decades, a worldwide
consensus in the nuclear
technical community for
disposal through geological
isolation of high-level
waste (HLW), including
spent nuclear fuel (SNF).1)

"Geological disposal
remains the only long-term
solution available."

National Research Council, 2001

Deep geologic disposal has been planned
since the 1950s:

Source: BMWI 2008, Figure 15.
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How Repositories Work
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emphasize different barriers:
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Status of Deep Geologic Disposal Programs
16  World-Wide

Finland

Sweden

Granitic Gneiss Construction license granted
2015. Operations application
to be submitted in 2020

Granite License application submitted
2011

France

Canada

China

Russia

Germany

Argillite Disposal operations planned for
2025

Granite, sedimentary rock Candidate sites being identified

Granite Repository proposed in 2050

Granite, gneiss Licensing planned for 2029

Salt, other Uncertain

USA Salt (transuranic waste at the
Waste Isolation Pilot Plant)
Volcanic Tuff (Yucca Mountain)

WIPP: operating
Yucca Mountain: suspended

Others: Belgium (clay), Korea (granite), Japan (sedimentary rock, granite), UK (uncertain), Spain
(uncertain), Switzerland (clay), Czech Republic (granitic rock), all nations with nuclear power.

Source: Information from Faybishenko et al., 2016
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Socio-Political Issues "Rule" SNF Management and
Final Disposition Regardless of the Fuel Cycle

Example: Brief History of the U.S. SNF Disposal Program*

1982: Nuclear Waste Policy Act (NWPA) defines Federal responsibility for permanent disposal
of spent fuel and high-level waste, and leaves responsibility for storage at reactor sites with
private sector

1987: Congress amends NWPA to focus solely on disposal at Yucca Mountain, Nevada

2002: Congress overrides Nevada's veto of the site and directs the Department of Energy and
the Nuclear Regulatory Commission to proceed with the licensing process

2008: DOE submits Yucca Mountain license application to the NRC

2009-10: DOE determines Yucca Mountain is "unworkable" and Congress terminates funding
for the project (directed by the U.S. president, in collaboration with the Majority Leader of the
U.S. Senate — a senator from Nevada)

2013: DOE proposes to "facilitate the availability of a geologic repository by 2048"

2015: NRC staff completes its Safety Evaluation Report for Yucca Mountain, concluding that
"DOE has met the applicable regulatory requirements" related to safety

2016-18: Private sector applications to the NRC for consolidated interim storage of spent fuel

Present: Funding for Yucca Mountain licensing process remains suspended. Approximately
300 technical contentions remain to be adjudicated before a licensing board can reach a decision
regarding construction authorization

Sevougian: IAEA Technical Meeting, GCNEP, Bahadurgarh, India, 25-29 November 2019 * From Swift 2017; Bonano 2019



Technically, How Might Alternative Nuclear
Fuel Cycles Impact Geological Disposal?

For a given amount of electric power, alternative fission-
based nuclear fuel cycles may result in

Changes in the radionuclide inventory
4 Reprocessing can reduce actinide content of final waste product

Changes in the volume of waste
4 Reprocessing can reduce the volume of waste requiring deep geologic disposal

Changes in the thermal power of the waste
Separation of minor actinides can reduce thermal pozver of the final waste form

Changes in the durability of the waste in repository environments
Treatment of waste streams can create more durable waste forms

• For each potential change, consider

• How will these changes impact repository safety

• How will these changes impact repository cost and efficiency
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Light-Water Reactor Spent Nuclear Fuel Decay
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1 
Contributors to Total Dose:

20 Meuse / Haute Marne Site (France)

Thrinfs [Elul

ANDRA 2005, Dossier 2005: Argile. Tome: Evaluation of the Feasibility of
a Geological Repository in an Argillaceous Formation, Figure 5.5-18,
million year model for spent nuclear fuel disposal and Figure 5.5-22, million
year model for vitrified waste disposal

Diffusion-dominated
disposal concept: Argillite 

• 1-129 is the dominant contributor
at peak dose

• Examples shown for direct
disposal of spent fuel (left) and
vitrified waste (below)

le-02

te03
hum I<I,N

r—

— 1120
— CI36
— 5e19
• •• Qunul

I 0001) I c+05
Tema Wed

1-129

Sevougian: IAEA Technical Meeting, GCNEP, Bahadurgarh, India, 25-29 November 2019



21

D
o
s
e
 R
at
e 
[S

v/
a]

 
Contributors to Total Dose:
Hypothetical Site (Canada)
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NWMO 2013, Adaptive Phased Management: Postclosure Safety Assessment of a
Used Fuel Repository in Sedimentary Rock, NWMO TR-2013-07, Figure 7-96.

Diffusion-dominated disposal
concept: spent fuel disposal
in unfractured carbonate host
rock

Long-lived copper waste 
packages and long diffusive
transport path

• Major contributor to peak dose is
1-129

• All waste packages assumed to fail
at 60,000 years for this simulation;
primary barriers are slow
dissolution of SNF and long
diffusion paths
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Contributors to Total Dose:
Forsmark Site (Sweden)

(0_11)Ra226

1129 (0_024)

(0_019)Np237

Se79 (0.013)

(0.0059)Plo210

(0_0039)Ni59

(0_0031)Ac227

(0_0017)Nb94

--- Total (0.18)

--------- Dose oxrespording to risk limit

104

Time (years)

Disposal concept with
advective fracture transport
in the far-field: Granite 

• Long-term peak dose
dominated by Ra-226

• Once corrosion failure occurs,
dose is primarily controlled by
fuel dissolution and diffusion
through buffer rather than far-
field retardation

Figure 13-18. Far-field mean annual effective dose for the same case as in Figure 13-17. The legends are
sorted according to descendingpeak mean annual effective dose over one million years (given in brackets

in pSv).

SKB 2011, Long-term safety for the final repository for spent
nuclear fuel at Forsmark, Technical Report TR-11-01
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1 
Contributors to Total Dose:

23 Yucca Mountain (USA)
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Waste Volume & Thermal Power Considerations
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- Repository thermal constraints
are design-specific

Options for meeting thermal
constraints include

Design choices including size and
spacing of waste packages

• Operational practices including aging
and ventilation

• Modifications to waste forms
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Selection of optimal waste volume and
thermal loading criteria will depend on
multiple factors evaluated across entire
fuel cycle, including cost and
operational efficiency 1
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Waste Volume & Thermal Power Considerations
(cont.)

1;T70

• To a first approximation, waste volume and thermal power density have

an inverse correlation without separation of heat-generating

radionuclides

All other factors held constant, reductions in volume increase thermal power density

• Relevant metric is disposal volume, i.e., the excavated volume needed per unit volume
of waste, which is a function of repository design as well as waste properties

Volume of HLW is process-dependent

Existing processes can achieve substantial reductions in disposal volume
• 30-40% of disposal volume relative to spent fuel (including packaging)

• Up to 8% of fuel volume with 100-yr aging period (van Lensa et al., 2010, table 7.1)

• Advanced processes may achieve lower volumes of HLW

Thermal power density of HLW can be engineered over a wide range

Waste volume does not correlate to long-term performance

It does affect cost (excavated volume and, ultimately, total number of repositories)

• Volume of low-level waste also contributes to total cost
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Waste Form Lifetime Example:
Meuse / Haute Marne Site

High-Level Waste glass

Base case model: glass "release periods on the order of a few
hundred thousand years" (degradation rate decreases when
surrounding medium is saturated in silica: Andra 2005, p. 221)

• Sensitivity analysis assuming rapid degradation (100s to 1000s of yr)
accelerates peak concentrations at outlet by —200 kyr, with a modest
increase in magnitude of modeled peak dose:

For rapid degradation case, modeled releases are controlled
by diffusive transport time in clay

Maximum molar flow exitM2 Callovo-Oxfordian (mol yr) and
maximum dates (yrs.)

Reference Sensitivity

129/ 8.6.104
460.000xrs

9.1.10
250..000 In

360 2.2.10
.380.000 yrs

3.8.10
190.000 yrs

Table 5.5-24 SEN - Attenuation 1:9 I and spC1 — C.1-PC2 comparison benveen the models Vo.S
(sei,isitivi) and the model Vo.S 4 V,.

Impact of changes in HLW glass degradation rate on modeled radionuclide
concentrations in groundwater, ANDRA 2005, Table 5.5-24
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Waste Form Lifetime Examples:
Forsmark Site

- Used fuel

• Fractional dissolution rate range 10-6/yr to 10-8/yr

• Corresponding fuel lifetimes: — 1 Myr to 100 Myr

• Dissolution rates for oxidizing conditions (not anticipated), up to 10-4/yr

• Uncertainty in fuel dissolution rate can be a dominant contributor to
uncertainty in modeled total dose estimates for sites with relatively
rapid transport

Source: SKB 2006, Long-term Safety for KBS-3
Repositories at Forsmark and Laxemar—a First
Evaluation, TR-06-09, section 10.6.5

Also, SKB 2006, Fuel and Canister Process
Report for the Safety Assessment SR-Can, TR-
06-22, section 2.5.5 M
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Comparison of Dose for Different Fuel Cycles: IAEA
28 2019 INPRO KIND Evaluation of 4 FCs from NEA 2006

• Clay repository host rock (SCK-CEN, SAFIR 2 Safety Assessment, Belgium)

Figure 5.15. Total dose calculated for Schemes la, 1 b, 2a, 3cV1 and 3cV1 with separation of Cs/Sr

Consider the following 4 of 12 NEA FCs:

• Scheme la (PWR, open cycle, UO2 fuel), 1,0E-10  

reference cycle — - la ...- - \

• Scheme lb (PWR, PUREX reprocessing, lb , 
. 

1,0E-11 - ---.% - •
\'

single recycling of Pu as MOX), 
2a 

—3cvl /

/ ..-- \
•

representative of current technology 1,0E-12 — 3cvl (no Cs/Sr)  /' // , •

• Scheme 2a (PWR, PUREX reprocessing,

multi-recycling of Pu as MOX), a partially- 1,0E-13 -

closed fuel cycle
I /

• Scheme 3cV1 (GFR, pyro-reprocessing, 1,0E-14 -

carbide fuel), a fully-closed fuel cycle. !/ ;

NEA 2006

Advanced Nucl = r Fuel
Cycles and Rad' c

1 1

1:pAEN
NEA

D
o
:
 

1,0E-15 -
'I '

1,0E-16 7

1,0E+02 1,0E+03 1,0E+04 1,0E+05 1,0E+06 1,0E+07

Time after canister failure (years)

"For all the repositories considered the maximum dose resulting from the disposal of HLW from the

fuel cycle schemes evaluated does not change significantly. The dose reduction factor resulting from

reprocessing is at most 8 and mainly results from the removal of 1291 from the liquid HLW during

reprocessing. Should 1291 be captured and disposed of in the HLW repository, the doses resulting

from all schemes would be about equal."

1
1
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Conclusions

Alternative fuel cycle choices can reduce waste volume but may

have little impact on thermal load management without century-

scale aging of fission products

Without separation or surface aging of fission products, reductions in disposal volume
may be limited to 30-40% of the disposal volume of the unprocessed fuel

Fission products may need geologic disposal regardless, depending on regulatory criteria

The impact of long-lived waste forms on repository performance

varies with disposal concept

For some disposal concepts, long-lived waste forms can be important

Alternative fuel cycle choices will have little impact on estimates of

long-term repository performance

• Long-term dose estimates in most geologic settings are dominated by mobile species,
primarily I-129

For any disposal concept, potential benefits of alternative fuel

cycle choices should be considered in the context of operational

costs and benefits
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2011 MIT FC Options Study
30 Some of their Observations

"We can and should preserve our options for fuel cycle choices by
continuing with the open fuel cycle, implementing a system for managed
LWR spent fuel storage, developing a geological repository, and researching
technology alternatives appropriate to a range of nuclear energy futures:

• For the next several decades, a once through fuel cycle using light water reactors (LWRs) is the
preferred economic option for the U.S. Improvements in light-water reactor designs to increase the
efficiency of fuel resource utilization and reduce the cost of future reactor plants should be a
principal research and development focus

Permanent geological isolation will be required for at least some long-lived components of spent
nuclear fuel, and so systematic development of a geological repository needs to be undertaken. We
recommend (1) the integration of waste management with the design of the fuel cycle, and (2) a
supporting R&D program in waste management to enable full coupling of fuel cycle and waste
management decisions.

Long-term managed storage preserves future options for spent fuel utilization at little relative cost.
Preservation of options for future fuel cycle choices has been undervalued in the debate about fuel
cycle policy. Planning for long term managed storage of spent nuclear fuel—for about a century—
should be an integral part of nuclear fuel cycle design.

• The choices of nuclear fuel cycle (open, closed, or partially closed through limited SNF recycle)
depend upon (1) the technologies we develop and (2) societal weighting of goals (safety, economics,
waste management, and nonproliferation)"
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Back-Up Slides
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EPRI 2010 Fuel Cycle Study
Some of their Observations

"A partially closed fuel cycle with fast reactors, in which fertile U-238 is converted
into fissile Pu-239, is presently considered the most attractive advanced option.
Another possibility is the thorium fuel cycle, in which fertile Th-232 is converted
into fissile U-233

"A nuclear fuel cycle has to be "industrially sustainable." An evolutionary and
progressive pathway appears to be more realistic than a revolutionary approach that
attempts to solve all the fuel cycle issues with extremely advanced technologies.
Possible evolutionary pathway:

1. Once-through cycle.
1a. Option: reprocessing of the used LWR fuel and single-recycling of extracted plutonium and reprocessed
uranium into LWRs.

2. Interim storage of spent UOX and spent MOX.
3. Partial closure of the fuel cycle with multi-recycling of plutonium in fast reactors (FRs) requiring advanced
reprocessing of both LWR and FR fuels.

3a. Option: recycling of the neptunium together with the plutonium.
4. Full closure of the fuel cycle with homogeneous multi-recycling of plutonium and minor actinides requiring
group separation of the transuranic elements.

4a. Option: Full closure of the fuel cycle with heterogeneous recycling of americium in the form of americium
targets and storage of curium to allow decay into lower actinides.

5. In all cases, disposal of fission products and of remaining actinides in a permanent geologic repository.

"The nuclear fuel cycle has to remain focused on efficient power
generation....advocating transmutation of all the transuranics and fission products,
or making nuclear materials so unattractive that they are practically unusable in the
fuel cycle itself, do not represent realistic options"

1
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