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2 I High-fidelity simulations are crucial for hypersonic vehicle
analysis and design

Time = 49.910000
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Mach # and wall pressure contours for HIFiRE
obtained from the SPARC CFD solver

•High-fidelity: extreme-scale, nonlinear dynamical system model.
• High cost: An unsteady multi-physics simulation can consume weeks on a supercomputer.

•High cost creates a "computational barrier" to the application of many-query and/or time-critical
problems:
• Many-Query: Design Optimization, Model Calibration, Uncertainty Propagation

• Time-Critical: Path Planning, Model Predictive Control, Health Monitoring
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3  There is very little previous work on projection-based model
reduction for Hypersonic Vehicles
•N o projection-based ROMs for hypersonic aerodynamics!

•[Dalle et al. 2010]: simplified aerodynamics and propulsion model for scramjet.

•[Falkiewicz and Cesnik 2011]: linear POD-Galerkin projection RO
finite-element model.

for unsteady heat transfer

•[Falkiewicz et al. 2014 Multi-physics Hypersonic vehicle ROM: coupled heat transfer ROM to
piston-theory aerodynamics model, kriging surrogate for aerodynamic heat loads, and modal
response structural model.

•[Crowell and McNamara, 2014 kriging-based surrogate model approaches for vehicle surface
pressures and temperatures.

•[Klock and Cesnik, 2017]: nonlinear POD-Galerkin projection ROM for unsteady heat transfer
finite-element model

POD-Galerkin ROMs are known to be ineffective for highly nonlinear systems.



4
Least Squares Petrov—Galerkin (LSPG) for steady systems
[Carlberg, Bou-Mosleh, Farhat, 2011; Carlberg, Barone, Antil, 2017]
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5 I We do hyper-reduction with collocation to keep offline costs down

•Collocation has been used in past studies of CFD model reduction [Washabaugh, 2016]:

LSPG: minimize lAr(41)0;,u,)3
c, A=

Collocation
=

choose rows of A
from identity matrix

>Inexpensive compared to DEEM and GNAT.

•Sample mesh: subset of cells required to compute residual

•We consider random sampling of cells in this study.
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6 I Pressio enables deployment of ROM methods to a range of
applications

•Previous ROM methods were implemented directly in
multiple application codes
X Highly intrusive: major changes to application code

XNot generalizable: individual ROM implementation for each
application

X Access requirements: developers need direct access to
application

•Pressio, a software package that addresses all three of
these issues:
VMinimally intrusive method implementation.

VLeverages modern software engineering practices (e.g. C++
template-metaprogramming)
➢ Restricted to practices used by mission application partners

VFacilitates contributions from external partners
➢ Open source

VClear separation between methods and application
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Schematic of Pressio software workflow

https://github.com/Pressio



7  Sandia Parallel Aerodyanmics and Reentry Code (SPARC)

•Compressible CFD code focused on aerodynamics and
aerothermodynamics in the Transonic and Hypersonic regimes
• Being developed to run on today's leadership-class supercomputers
and exascale machines.

• Performance portability: SPARC leverages Kokkos to run on
multiple machines with different architectures (e.g. CPU vs.
CPU/GPU)

•Physics Capabilities include:
• Navier—Stokes, cell-centered finite volume method

• Reynolds-Averaged Navier—Stokes (RANS) , cell-centered
finite volume method

• Transient Heat Equation, Galerkin finite element method.

• Decomposing and non-decomposing ablation equations, Galerkin
finite element method.

• One and two-way coupling between ablation, heat equation, RANS.

Time = 49.910000
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8 I Test Case: HIFiRE flight vehicle

*Flow field:
• Free stream Mach No. = 7.1

• Reynolds No. = 10.0
million/meter

• Angle of Attack = 2 degrees

• Boundary layer transitions to
turbulence (use Spalart-Allmaras
with specified transition location)

•Spatial discretization:
• 2nd-order finite volume

• 2,031,616 cells
• y±<1 near wall

•Solver:
• Pseudo time stepping with
backward Euler, CFL schedule.
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9 I Training Data and Model details

*Samples:

• Varied freestream density and velocity

• Training set: 24 sample Latin hypercube

• Test set: 12 sample Latin hypercube

POD basis:

• Mean flow subtracted from each snapshot.

• Each conserved quantity scaled by its maximum over all
FOM solutions.

• First 12 modes used for basis.

• Basis contains over 99.99% of statistical energy.

•ROM: LSPG solved with Gauss-Newton iteration

• Initial guess obtained via inverse-distance interpolation of
POD modes.

• Sample mesh: 49,467 cells = —2.5% of mesh
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10  LSPG is accurate for HiFIRE predictive cases
L2 Error of surface pressure coefficients

Circle size, color: Error w. r. t. FOM
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*ROM L2 error is under 5% at all cases.
*The ROM solution is much more accurate than the initial guess in several cases: 1,3,4, and 6.
•The ROM solution is just as accurate as the initial guess in case 9.



11 I LSPG is fast for HiFIRE predictive cases
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•Could run between —4000 and —7000 ROMs with the same CPU hours to compute one
FOM solution!

*ROM is between —100 and —200 times faster than the FOM in wall time!



12 I Conclusions and Future Work

•High-fidelity simulations are crucial, but expensive
for hypersonic vehicles

•Model reduction of hypersonic flows with LSPG
shows promise:
>Pressio-SPARC adapter enables minimally intrusive
ROM implementation.

>Preliminary results for HIFiRE show low cost and
accuracy of LSPG.

°Future Work
• Larger parameter variations and more parameters
• Hyper-reduction techniques
• New cases
• Double cone with non-equilibrium chemistry
• Thermal/Ablation models for vehicle

• Integration with multi-fidelity UQ and/or
optimization.

•Goal: apply ROM to physically relevant
parameter space, such as a range of flight
conditions
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1 4 I Our research satisfies model reduction
dynamical systems

Our model reduction research at Sandia
• Accuracy

>. LSPG projection: our baseline approach, has been applied to a compressible solver
[Carlberg, Bou-Mosleh, Farhat, 2011; Carlberg, Barone, Antil, 2017]

• Low cost

> Sample mesh: use a fraction of the data for evalutaing nonlinear functions [Carlberg,
Farhat, Cortial, Amsallem, 2013]

> Space—time LSPG projection: learn and exploit structure in spatial and temporal
data [Carlberg, Ray, van Bloemen Waanders, 2015; Carlberg, Brencher,
Haasdonk, Barth, 2017; Choi and Carlberg, 2019]

• Property preserva tion

> Impose additional physical constraints (e.g. conservation) [Carlberg, Tuminaro, Boggs,
2015; Peng and Carlberg, 2017; Carlberg, Choi, Sargsyan, 2018]

• Generalization

> Projection onto nonlinear manifolds: high capaci0 nonlinear approximation [Lee,
Carlberg, 2018]

> h-adaptivity: trade cost for accurag [Carlberg, 2015; Etter and Carlberg, 2019]

> Pressio software: deploy methods for many application codes

• Certification

> Machine learning error model: quantift reduced model uncertainties [Drohmann
and Carlberg, 2015; Trehan, Carlberg, Durlofsky, 2017; Freno and Carlberg,
2019; Pagani, Manzoni, Carlberg, 2019]

criteria for nonlinear

Model Reduction Criteria
. Accuracy: achieves less than 1% error
. Low cost: achieves at least 100x

computational savings
3. Property preservation: preserves important

physical properties
4. Generalization: should work even in difficult

cases and for many application codes
5. Certification: accurately quantify the ROM

error
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Upcoming: a paper on Pressio (https://github.com/Pressio)



16 I LSPG results for HiFIRE predictive cases
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FOM

ROM Error
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Initial
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0 3.66E-02 1.49E-02 4.08E-01

1 2.96E-02 2.10E-03 7.11E-02

2 4.76E-02 2.29E-02 4.82E-01
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4 1.93E-01 1.53E-02 7.96E-02
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6 1.00E-01 2.77E-03 2.76E-02

7 3.01E-02 5.49E-03 1.83E-01

8 7.38E-02 3.04E-02 4.11E-01

9 7.29E-03 7.61E-03 1.04E+00

10 1.19E-01 1.39E-02 1.17E-01

11 1.22E-01 1.97E-02 1.61E-01



17 LSPG results for HiFIRE predictive cases
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