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High-fidelity simulations are crucial for hypersonic vehicle

analysis and design
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Mach # and wall pressure contours for HIFiRE
obtained from the SPARC CFD solver
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Temperature of a slender body in hypersonic flow
obtained from the SPARC CFD solver

*High-fidelity: extreme-scale, nonlinear dynamical system model.
* High cost: An unsteady multi-physics simulation can consume weeks on a supercomputet.

*High cost creates a “computational barrier” to the application of many-query and/or time-critical

problems:

* Many-Query: Design Optimization, Model Calibration, Uncertainty Propagation
* Time-Critical: Path Planning, Model Predictive Control, Health Monitoring
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3 | There is very little previous work on projection-based model
reduction for Hypersonic Vehicles

*No projection-based ROMs for hypersonic aerodynamics!
*[Dalle et al. 2010]: simplified aerodynamics and propulsion model for scramjet.

*[Falkiewicz and Cesnik 2011]: linear POD-Galerkin projection ROM for unsteady heat transfer
finite-element model.

*[Falkiewicz et al. 2011]: Multi-physics Hypersonic vehicle ROM: coupled heat transfer ROM to
piston-theory aerodynamics model, kriging surrogate for aerodynamic heat loads, and modal
response structural model.

*[Crowell and McNamara, 2012]: kriging-based surrogate model approaches for vehicle surface
pressures and temperatures.

*[Klock and Cesnik, 2017]: nonlinear POD-Galerkin projection ROM for unsteady heat transfer
finite-element model

POD-Galerkin ROMs are known to be ineffective for highly nonlinear systems.




Least Squares Petrov—Galerkin (LSPG) for steady systems

4 [Carlberg, Bou-Mosleh, Farhat, 201 |; Carlberg, Barone, Antil, 2017]

*High-fidelity simulation = F(X; ) = 0
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We do hyper-reduction with collocation to keep offline costs down
*Collocation has been used in past studies of CFD model reduction [Washabaugh, 2016]:
LSPG: minimize ||Ar(®U; p)lf5 A :|]:|:[|:I Collocation (1 000 .. 0

v - 0 0 10 .. 0

choose rows of A 1 0

from identity matrix )

» Inexpensive compared to DEIM and GNAT.

*Sample mesh: subset of cells required to compute residual

*We consider random sampling of cells in this study.

Sample Mesh:

Full Mesh:




¢ I Pressio enables deployment of ROM methods to a range of

applications

*Previous ROM methods were implemented directly in
multiple application codes

X Highly intrusive: major changes to application code

XNot generalizable: individual ROM implementation for each
application

X Access requitements: developers need direct access to
application

*Pressio, a software package that addresses all three of
these issues:
v’ Minimally intrusive method implementation.

v'Leverages modern software engineering practices (e.g. C++
template-metaprogramming)
> Restricted to practices used by mission application partners
v'Facilitates contributions from external partners

» Open soutce

v'Clear separation between methods and application

rom }

Adapter

: int main() lﬁﬂ,t Tf,ng

Application Core Code
T = f(ma t; IJ’)
z(0; p) = @o(p)

......................................................................

Application Side

Schematic of Pressio software workflow

https://github.com/Pressio



7 I Sandia Parallel Aerodyanmics and Reentry Code (SPARC)

*Compressible CFD code focused on aerodynamics and
aerothermodynamics in the Transonic and Hypersonic regimes

* Being developed to run on today’s leadership-class supercomputers

and exascale machines. Time = 49.910000
* Performance portability: SPARC leverages Kokkos to run on R
multiple machines with different architectures (e.g. CPU vs. © 460403
CPU/GPU) 1.3266+03
8.051e+02
*Physics Capabilities include: | > Btdos0n

* Navier—Stokes, cell-centered finite volume method

Solid Temp [K]
* Reynolds-Averaged Navier—Stokes (RANS) , cell-centered 1 8766+03
finite volume method | 1.469+03

. . . . 1.061e+03
* Transient Heat Equation, Galerkin finite element method.

6.539e+02

* Decomposing and non-decomposing ablation equations, Galerkin 2.4630+02
finite element method.

Temperature of a slender body in |

* One and two-way coupling between ablation, heat equation, RANS. . _ :
hypersonic flow simulated with SPARC



Test Case: HIFIiRE flight vehicle

. ‘
e 20d_grder finite volume

Close up of nose:
* 2.031,616 cells
* y"<1 near wall
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backward Euler, CFL schedule. 9.90.03 -

*Flow field:
* Free stream Mach No. = 7.1

* Reynolds No. = 10.0

million/meter
* Angle of Attack = 2 degrees

* Boundary layer transitions to
turbulence (use Spalart-Allmaras
with specified transition location)

*Spatial discretization:

wall-C_p

*Solver
* Pseudo time stepping with




9 I Training Data and Model details

*Samples:
* Varied freestream density and velocity
* Training set: 24 sample Latin hypercube
* Test set: 12 sample Latin hypercube

*POD basis:

* Mean flow subtracted from each snapshot.

* Hach conserved quantity scaled by its maximum over all

FOM solutions.
* First 12 modes used for basis.

* Basis contains over 99.99% of statistical energy.

*ROM: LSPG solved with Gauss-Newton iteration

* Initial guess obtained via inverse-distance interpolation of

POD modes.
* Sample mesh: 49,467 cells = ~2.5% of mesh
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10 | LSPG is accurate for HiFIRE predictive cases

L2 Error of surface pressure coefficients
Circle size, color: Error w.r.t. FOM

Mach Number

*ROM 1.2 error is under 5% at all cases.
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*The ROM solution 1s much more accurate than the initial guess in several cases: 1,3,4, and 6.
*The ROM solution 1s just as accurate as the initial guess in case 9.




11 | LSPG is fast for HiFIRE predictive cases

*Could run between ~4000 and ~7000 ROMs with the same CPU hours to compute one

FOM solution!
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*ROM is between ~100 and ~200 times faster than the FOM in wall time!



12 I Conclusions and Future Work oM
1:22:39, 128 cores

*High-fidelity simulations are crucial, but expensive
for hypersonic vehicles

*Model reduction of hypersonic flows with LSPG
shows promise:
» Pressio-SPARC adapter enables minimally intrusive

ROM implementation.
» Preliminary results for HIFIRE show low cost and

accuracy ot LSPG. [1.8e+00 [
7
1.5
*Future Work ¢
* Larger parameter variations and more parameters 9 s g ROM
: R 0:00:36, 4 cores

* Hyper-reduction techniques
~1% error

* New cases
* Double cone with non-equilibrium chemistry
* Thermal/Ablation models for vehicle
* Integration with multi-fidelity UQ and/or

optimization.

*Goal: apply ROM to Ehysically relevant
parameter space, such as a range of flight
conditions

https://github.com/Pressio
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14 I Our research satisfies model reduction criteria for nonlinear
dynamical systems

Our model reduction research at Sandia
* Accuracy

» LSPG projection: our baseline approach, has been applied to a compressible solver
[Catlberg, Bou-Mosleh, Farhat, 2011; Catrlberg, Barone, Antil, 2017]

e Low cost

—_— b 15t a fraction of the data for evalutaing nondinear finctions [Caslb Model Reduction Criteria
ample mesn: #se a jraction o ¢ aald 01 eValuiaing noninear Juncrions ariperg, 5
parhft, Cortial, Amsallem, 2013 : ¢ . Accuracy: achieves less than 1% error

» Space—time LSPG projection: learn and exploit structure in spatial and temporal . Low cost: achieves at least 100x
data |Catlberg, Ray, van Bloemen Waanders, 2015; Carlberg, Brencher, Computation al savi ngs

Haasdonk, Barth, 2017; Choi and Carlberg, 2019 : :
sasdonks, Barth, 2017; Chot and Carlberg, 2019) Property preservation: preserves important
* Property preservation

physical properties

Generalization: should work even in difficult
cases and for many application codes
Certification: accurately quantify the ROM
error

» Impose additional physical constraints (e.g. conservation) [Cartlberg, Tuminaro, Boggs,
2015; Peng and Carlberg, 2017; Carlberg, Choi, Sargsyan, 2018]

 Generalization

» Projection onto nonlinear manifolds: high capacity nonlinear approxcimation [Lee,

Carlberg, 2018]
> h-adaptivity: trade cost for accuracy [Catlberg, 2015; Etter and Carlberg, 2019]
» Pressio software: deploy methods for many application codes

e Certification

» Machine learning error model: guantify reduced model uncertainties [Drohmann
and Carlberg, 2015; Trehan, Carlberg, Durlofsky, 2017; Freno and Catrlberg,
2019; Pagani, Manzoni, Carlberg, 2019]
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Upcoming: a paper on Pressio (https://github.com/Pressio)




Density (kg/m?)

LSPG results for HiFIRE predictive cases

L2 Error of surface pressure coefficients
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17 | LSPG results for HiFIRE predictive cases

Ratio of FOM and ROM execution times (CPU Hours)
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