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Background lllustration, continued |
Goal: Standard binary mapping for qubit encoding

Explore applications of quantum computers for quantum

, , , Mapping from vibrational states to qubit states:
optimal control simulations

The aim of quantum optimal control 1s to design a field f(7), v) = 14
t € [0,T], to steer a quantum system towards a desired control target 0) = 10310)--10) 10210} | g1evel system — log,(d) qubits

at ime T by optimizing over a set of control parameters {6,}. 1) = 10)10)---10)|0) | 1)
2) = |0)|0)---]0)|1)]0) | M degrees of freedom with d

Problem 1s posed as the search for 3) = [0)] 0+ 0)| 1)] 1) levels each — M log,(d) qubits

max J[7, {6;}]
{0;} Mapping to qubit operators:

here J[T, {6;}] 1s the control objective functional
w 16;} jective fu H = Zav,‘/|v><v| — Zaq,q,
Simulation framework 99

Projectors expressed as products of:

Problem Qubit encoding \ [ 1)(1] = % 10)0] = % [0)CL] = X;iY [ 1){0] = X_ziY
definition , (0)
> 077 (6} o . .
JIT, {6}] R o a Product formulas for quantum simulation of driven dynamics
v l 'Time evolution of mitial state |yw(0)) to terminal state |yw(T))
Input state Quantum circuit Qubit readout simulated as W) = UCT0) w0
o) [P1ol e T A ) P
_ Discretize time 1nto steps of length Ar & assume Hamiltonian

* . 1s plecewlise-constant over each step:
0.}
O Classical Q Quantum { Il} UT,0)=UT, T— Ar)---UQ2At, Ar) U(At,0)
ol R Upp(T, T — At)---Upp(2At, At) Upp(At,0)
updates

Time evolution over each At approximated using product
formulas, e.g.:

Uppr(t + At, 1) = (e HOAIng—iH0Mn, e—iHL(t)At/n@

“Trotter number”

{gi}(k) - {ei}(kﬂ)

Output results

(9.1® Errors reduced by going to higher order

exact as n — o0
product formulas
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Control of bond displacement in dt S8
diatomic molecule : “

| Upp(T,T = At) [ | Uppi((k + 1)At KAL)

JIT, (031 = ((w(D) | r|w(D) —7)° ) (a0}

Goal: Identity set of control parameters
{6.} describing field f(¥) that drives bond to
target stretch y = 1.5r, at time
T =1,000 a.u. ~ 24 ts

—~ 0.2 _
& 2 . 1 . . . —
S/ V(r) = D(l B e—(x(r—ro)) _D N Field optimized to J[T, {6;}] = 0.99 OUthOk
— = 0.05! | _ . .
N G e [llustration 2: control of state preparation
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