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Background

Goal:
Explore applications of quantum computers for quantum

optimal control simulations

The aim of quantum optimal control is to design a field f(t) ,
t E [0,7], to steer a quantum system towards a desired control target
at time T by optimizing over a set of control parameters {Oi}.

Problem is posed as the search for

max J[T, {Oi}]
{69

where J[T, foil] is the control objective functional
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Illustration:
Control of bond displacement in

diatomic molecule

J[T, {Oi}] r)2

Goal: Identify set of control parameters
{Oi} describing field f(t) that drives bond to

target stretch y = 1.5r0 at time
T= 1,000 a.u. r,:id 24 fs
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Control parameters {69 are amplitudes,
phases, and detunings of set of frequency

components in f(t)

Errors reduced by going to higher order
product formulas
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Illustration, continued

Standard binary mapping for qubit encoding

Mapping from vibrational states to qubit states:

Iv) ->

10) -> 10)10)...10)10)10)

11) -> 10)10)-10)10)M

12) -> 10)10)...10)11)10)

13) -> 10)10)...10)11)11)

d level system -> log2(d) qubits

M degrees of freedom with d
levels each -> M log2(d) qubits

Mapping to qubit operators:

H=~av,v,lv>(vl
v,v,

Projectors expressed as products of:

I Z I + Z X + iY
1X1 = I 0) (0 I = 2 I 0)(1- =

2 = X —2iI7

Product formulas for quantum simulation of driven dynamics

Time evolution of initial state l v(0)) to terminal state l yr(T))
simulated as

l (T )) = U(T ,0) I v (0))

Discretize time into steps of length At & assume Hamiltonian
is piecewise-constant over each step:

U(T,0) = U(T, T - AO- • U(20t, At) U(At,0)

UPF(T,T — At) • • • UPF(2At, At) UPF(At,O)

Time evolution over each At approximated using product
formulas, e.g.:

UPF1(t + At, t) (e-iHi(t)AtIne-iH2(t)AtIn • • e-iHL (t)AtIn

"Trotter number"

exact as n oo

U(T.0)

• • •UpF1(T,T — At) UpF1(At, 0)• • = UpF1((k + 1)At, kAt)= • —

Li-LL e- (kAt)At/n e-illi(kAt)AtIn ,0-i.111(kAt)AtIn
111=1'

n times
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e—i0sail)ri(kAt) e-i0842)72(kAt) • • •
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Field optimized to J[T, fOil] = 0.99
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Outlook

• Illustration 2: control of state preparation
in a model for a light harvesting complex

• Estimation of the quantum resources
necessary for DOE mission-relevant
quantum control applications
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