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Why focus on Diels Alder poly(phenylene)?

• Membrane development
program begin in 2001
through a SNL internally
funded program to develop an
alternative to Nafion.

• Shown are some common
polymer backbones that have
been investigated

• Polymers have long term
stability issues

• Red arrows indicate "weak
points"

Hubner, G.; Roduner, E. J. Mater.
Chem., 1999, 9, 409-418
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I Why focus on Diels Alder poly(phenylene)?
Poly(phenylene)s offer higher chemical-thermal stability.

Zit

Eur. Pat. Appl. (2001), EP 1138712 A2 20011004.

Disadvantages

■

Si, K; Dong, D; Wycisk, R; Litt, M.
J. Mater. Chem. (2012), 22(39), 20907-
20917.

1. Require use of metal catalysis: Reaction moisture sensitive and must remove
catalysts after polymerization [increase costs]

2. Resultant polymers are a ridged rod (PPP), very difficult for chain
entanglements = brittle mechanical properties even with high Mn



Why focus on Diels Alder poly(phenylene)?
o

• Diels Alder reaction no metal
catalyst required, not moisture
sensitive.

• The loss of CO drives the
reaction — not reversible, can
generate very high Mn.

o

bis-tetracyclone

• In reaction intermediate, two
possible approaches the
ethynyl group can approach
ketone = both meta and para
formed, polymer not ridged rod.

• Pendant phenyl groups (blue)
are functionalized since
sterically exposed.

1,4 diethynyl benzene

- 2 CO

1

Stille, J; Harris, F; Rakutis, R; Mukamal, H. J. Polym. Sci., Polym. Lett. (1966), 4(10), 791-3



Why focus on DieIs Alder poly(phenylene)?
5

SEMICONDUCTOR FAB MATERIALS

SiLX'

Low K & Ultra Low K
Metrology comes to the rescue

Don Fiye, Carol Mohler

Semiconductor Fab Materials

1712 Building

The Dow Chemical Cornpany

Midland, MI, USA

siutner *
ve)alliance

2005 InfernoNon& Confonnco on CharactonzoOon on0 M000logy lot U1.51 Technology MIMI, 10, 2005

SEMICONDUCTOR FAB MATERIALS

Organic Dielectric Films

(. SILK oigainc dielectric

SiLlr

• Possible — Feasible to scale chemistry? Yes

Dow

20051~560,W Conforona on Cheracloil25tlon and Ustrology for ULM Tochndogy MINCh 16, 2005

• Cost? Silicon dioxide (low volume pricing Sigma-Aldrich $64/kg)
assume SiLk costs were not extremely far off from this value since
cost was never an issue [Nafion $5000/kg approximately $250/m2]
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1 Cation exchange membrane for PEMFC
HO3S HO S

1. DCM, 4 eq
chlorosulfonic acid

2. NaOH

3. HC1

SDAPP = Sulfonated Diels Alder Poly(phenylene)

Fujimoto, C; Hickner, M; Cornelius, C; Loy, D. Macromolecules (2005), 38(12), 5010-5016.
Cornelius, C; Fujimoto, C; Hickner, M. U.S. (2007), US 7301002 B1 20071127.
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IEC > 2.5 meq/g,
due to insolubility

-Condition : 60 ° C, 2 Hrs (for HC membranes)
I : 3 wt% H202, 4 ppm Fe2+

99 %mmat (1.6 y 97 % 221

• erribrane : 2.2 meq
1 wt% H202, 10 ppm FeCl2
: 100 ° C, 2 Hrs

• - Completely destroyed
A little amount of
remained in the solution.

• Commercially available Nafion shows 2 — 4 % decrease in weight with
standard condition for 8 Hrs.

Highly durable as a HC membrane, but des e durability

TOYOTA Very good humidified performance and good durability
Poor low RH performance and not as durable as PSFAs



Cation exchange membrane for PEMFC
HO3S HO3S S03

1. I
—Si—O—S—Cl le • 41
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IECs up to 3.5 meq/g, higher

0
values lead to water solubility
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Polarization Performance
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Much better low RH performance (30 %)
At very low RH (< 25 %) performance lags behind Nafion
Reaching limits of randomly sulfonated polymer
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microstructure
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Block



Cation exchange membrane for PEMFC ..-------- Automotive
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1 Cation exchange membrane for PEMFC
• NAF IOW 211 more ram

• ilOAPP Okla ooPollow
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Cation exchange membrane for VRFB

• R&D interest in large scale energy
storage program increased

• Flow batteries are an important in
large scale storage; separation of
energy and power.

• VRFB most mature; robust battery.
Allows for deep discharge, long life
cycles and little capacity fade.

• Several companies looking to
commercialize the technology.

UniEnergyLL I Technologies *wattjouie NX"

ENERGY



Cation exchange membrane for VRFB

• Membrane selectivity is key, requires
high proton over vanadium transport.

• Believed the blocks with an inverse
morphology would be ideal.

Protons and water
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1 Cation exchange membranes for VRFB
BO
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Data by PNNL, SNL membrane has high efficiencies (90% EE, PFSA 75%) and

high capacity retention; PFSA 75% EE

*Wattjoule
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Blocks have better performance compared to PFSA, better capacity retention.
Durability still not as good as Nafion and looking to improve durability.



1 Anion Exchange Membrane (AEM)

1. Polymer that contains bound positive charges.
2. Alkaline stable  AEM allows for new

electrochemical applications.
3. There is no accepted alkaline stable  "state of
the art" AEM.

Growth of AEM interest 2001 - 2017 
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I Anion exchange membrane structures

N BS
benzoyl peroxide
 )...-
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Hibbs, M; Fujimoto, C; Cornelius, C. Macromolecules (2009), 42(21), 8316-8321.
Hibbs, M; Cornelius, C Fujimoto, C. U.S. (2011), US 7888397 B1 20110215.
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1 Recent independent stability survey of AEM
• Growth and interest in AEMs, but need to objectively determine best AEM candidates
• Third party lab investigated accelerated membrane durability under alkaline conditions by soaking films in

1 M KOH for 1000 hr at 80 °C and monitoring any loss in 1. IEC 2. Conductivity 3. Mechanical

°OM e

Perfluoro (PF)

(-) I
N

S"
PF8ar

Polyphenylene (PPN)

Poly(aryl ether sulfone) (PAES) Polyethylene (PE) 

Polystyrene (PS)

PE or ETFE

0

O

Polyfluorene (PFN)

R = (CH2)„X+OH-

R

X = typically
N(CH3)3

PPN6 Credit: Kelly Meeks and Bryan Pivovar NREL
Presented at 236th ECS Meeting 2019

EL
NATIONAL RENEWABLE ENERGY LABORATORY
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I Anion exchange membrane IEC and
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Cl 

and Bryan Pivovar
NREL

• Hydroxide ion is a strong
base and nucleophile.

• Three different mechanism
that result in IEC and
conductivity loss.

Acceptable loss < 5°/0

Sandia polymer, PPN6
passed this test!

64 % of surveyed polymers
saw less than a 5% loss in IEC
(Sandia polymer is PPN6).

but

42 % of surveyed polymers
saw less than a 5% loss in
conductivity (Sandia polymer is
PPN6).

11 E L
NATIONAL RENEWABLE ENERGY LABORATORY



'Anion exchange membrane Mechanical stability

o0H

Polymer

1 M KOH

80°C
Polymer

Perfluoro (PF) Poly(aryl ether sulfone) (PAES)

O I
-g

PF

Polyphenylene (PPN) Polystyrene (PS) 

TR

0
e 

H

Polyethylene (PE)

Polyfluorene (PFN)

000.0,,FFF-11;

R = (CF12),,X•OH

• Only 20% of films maintained
mechanical properties.

• Only three poly(phenylene) type
structures survived (PPN6 is the 
Sandia polymer).

• All other types of backbones look to
degrade.

• PPN6 showing encouraging durability.

PF1 Non-degraded (1.1, and degraded IR): PF2 Non-degraded ILI and degraded IR) PAES Non.degraded IL) and degraded IRV:

KIP
PEI Non-degraded 04 and d•georkd (R): PE2 Non-degraded (Wand degraded IR): PFNI Non-degraded (LI and degraded (R):

PPM Han-degradad (L) and degraded (R): PPN2 Non-degraded ILI and degraded IR): PPN3 Non-degraded ILI and degraded IRI:

PPN4 Non.dagraded 0.1 and degraded (R): PPN5 Non4lagradad (L) end degraded (R): N6 Non-degraded ILI and degra,,d IR):

P51 Non-degraded (L) and degraded (R): PS2 Non-degraded {L} and degraded (RI: PS3 and degraded {RI:

Credit: Kelly Meeks and Bryan Pivovar NREL

NATIONAL RENEWABLE ENERGY LABORATORY



Anion exchange membrane in AOFB

Harvard professor, Michael Aziz
developing aqueous flow battery with
earth abundant materials

Using alkaline environment helps
improve solubility quinone (increase
energy density)
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SNL polymer shows 1/4 of the resistance of Nafion. Higher
energy efficiencies than Nafion (+20%).
However, slightly higher capacity loss seen with SNL material.



1 Intermediate temperature fuel cell (ITFC)
PEM fuel cells temperature limitation is caused by the need of water (conducting
medium). Phosphoric acid doped PBI, employs phosphoric acid as conducting
medium. Product of BASF under the name Celtec.

HO I OH
O

PBI

Weakly basic polymer

Acid-base interaction

IL,
• _ •

Phosphoric acid

4 EINI = 17. 4 kcal/mol

Benzimidazole

H

85% H3PO4

O

0 I OF
OH x

N

H

Phosphoric acid-
Polybenzimidazole

•**
0*
0

..0
C PA Operating

leaching temp
1 1 1 1 1 1 1

20 40 60 80 100 120 140 160 180 200

Temperature (°C)

• LosAlamos
NATIONAL LABORATORY
 HI.

Phosphoric acid doped PBI can operate at temperatures (140 — 180°C), but issue
is phosphoric acid loss by leaching due to weak polymer-acid interaction.



1 Anion exchange membrane for ITFC
Cc) 

NMe3

85 % H3PO4

Strong base containg polymer

Benzyl

Ion Pair Interaction

ammonium Biphosphate40:t

0.7

INT = 152 kcal/mo

H2PO4 H2PO4
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NMe3 Me3N
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H2PO4

3 H20

Los Alamos
NATIONAL LABORATORY
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•. • ••O'.
4 4
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o reaction
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Anion exchange membrane doped with Phosphoric acid doped PBI have
stronger polymer-acid interaction (ionic). Broadens operation temperatures.

Lee, K; Spendelow, J; Choe, Y; Fujimoto, C; Kim, Y.S. Nature Energy (2016), 1(9), 16120.



1 Anion exchange membrane for ITFC
• QAPOH has high

conductivity even in the
presence of water (up to
50% R H )

• Long term fuel cell
performance of QAPOH
between 80 - 160 °C
superior to Celtech
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Conclusions
• Sandia has developed a platform of materials based on

Diels Alder poly(phenylene)s.

• Developing both cation and anion exchange membranes
for electrochemical use.

• Acid block co-polymers have showed very good
performance in PEM fuel cell and vanadium redox flow
battery.

• Anion exchange membrane has very good durability.

• Employing the anion exchange membranes in a variety
of applications and show promise.

Sandia
National
Laboratories
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