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In the past few decades, advancements in computing hardware and physical modeling ca-
pability have allowed computer models such as computational fluid dynamics to accelerate
the development cycle of aerospace products. In general, model behavior is well-understood
in the heart of the flight envelope, such as the cruise condition for a conventional commer-
cial aircraft. Models have been well validated at these conditions, so the practice of running
a single, deterministic solution to assess aircraft performance is sufficient for engineering
purposes. However, the aerospace industry is beginning to apply models to configurations
at the edge of the flight envelope. In this regime, uncertainty in the model due to its
mathematical form, numerical behavior, or model parameters may become important. Un-
certainty Quantification is the process of characterizing all major sources of uncertainty
in the model and quantifying their effect on analysis outcomes. The goal of this paper is
to survey modern uncertainty quantification methodologies and relate them to aerospace
applications. Ultimately, uncertainty quantification enables modelers and simulation prac-
titioners to make more informed statements about the uncertainty and associated degree
of credibility of model-based predictions.

I. Introduction

This paper was written in concert with the ATAA Certification by Analysis (CbA) Community of Interest
(Col) Recommended Practices document, which was under development in 2019. The purpose of that
document is to describe a set of recommended practices (tasks) for an applicant to accomplish when flight
modeling is being developed, proposed, and used to reduce flight testing relative to established aircraft
certification practices. The specific certification requirements considered when these recommendations were
developed include aircraft performance and handling qualities, static loads and aeroelastic stability. However,
the framework consisting of the recommended tasks may also be applicable when showing compliance to other
requirements.
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For the purposes of this paper, flight modeling includes analysis methods of all types, including analyses
based on wind tunnel results, numerical methods such as Computational Fluid Dynamics (CFD) and Com-
putational Structural Dynamics (CSD), and Flight Dynamics Simulation (FDS) (i.e., simulations of aircraft
flight dynamics behavior with or without a human pilot). The CbA Col recommended tasks address subjects
pertinent to most flight modeling analyses. These tasks are:

e configuration and process management

verification of the models

verification the models were applied correctly

e validation of the models

e justification of analysis adequacy in recognition of potential modeling error and/or uncertainty
e a summary assessment of applicability for showing compliance

These tasks provide a framework for organizing information used to determine whether or not a particular
analysis method is appropriate for supporting a compliance showing in a particular application. The CbA
Col document (still in work at the time of this writing) includes an annex on uncertainty quantification (UQ),
however it is limited in scope. The purpose of this paper is to expand upon the fourth and fifth recommended
tasks of the CbA Col document by providing a survey of UQ considerations and methodologies as they apply
to CbA or other aerospace applications.

An overview of the subject of uncertainty quantification is given in Section II. The identification, charac-
terization, propagation and aggregation, and analysis components of UQ are described in Sections II.A-I1.D.
Methods described in Section II are applied to two realistic engineering examples in Section III to provide
estimates of uncertainty for CFD drag prediction and for wind tunnel correction calculations. Section IV
includes descriptions of two more hypothetical examples involving longitudinal stability and control charac-
teristics and FDS for a time-to-roll maneuver. Finally, conclusions are made in Section V.

II. Overview of UQ

Uncertainty Quantification is the process of characterizing all major sources of uncertainty in the model
and experiment, and quantifying their effect on the analysis outcomes. UQ is a closely related activity
to verification and validation (V&V) and is essential for verifying and validating analysis models. For
practical engineering purposes, the goal of UQ, along with V&V, is to enable modelers and analysts to
make justifiable statements about the accuracy/uncertainty and associated degree of credibility in their
analysis-based predictions. In this context, UQ can be defined!® as the

o Identification (Where are the uncertainties?),
o Characterization (What form are they, and what are their mathematical descriptions?),

e Propagation and Aggregation (How do they combine to determine total uncertainty in the analysis
results?), and

e Analysis (What are their impacts and implications?)

of uncertainties in analysis models. The outcome of UQ is the enablement of modelers and analysts to
make more informed statements about the uncertainty and associated degree of credibility they have in
their analysis-based predictions, as compared to the practice of performing deterministic analysis (i.e., not
considering uncertainties).

Estimating the impacts of modeling errors or uncertainties is not new to certification. For example, the
EASA generic Equivalent Safety Finding (ESF) certification review item for Requirement 25.251(b)* and
the corresponding FAA Equivalent Level of Safety Finding (ELOS) issue papers® state that applicants may
propose to use computational fluid dynamics to show that installing large radome or antenna covered by
an aerodynamic fairing does not introduce excessive vibration, provided that the applicant can demonstrate
that the CFD tool is “valid for its intended use” and that “CFD Modeling Errors” are understood. The
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Table 1. Some sources of uncertainty in experiments and experimental data.

Source of Uncertainty Description

Measurement uncertainties Sensor and data acquisition system inaccuracies, etc., in
measurement or estimation of:

e Experimental conditions and inputs, e.g., initial and boundary
conditions

e System responses, behaviors, outputs

Extrapolation-bias uncertainty Occurs when bias corrections and uncertainty characterizations of
experimental results are extrapolated from where they were
originally quantified

Random variability over Examples are unit-to-unit geometric and physical variability in

replicate tests replicate tests and variability of measurement accuracy in the
different tests

Data processing and inference Examples:

uncertainties

e Uncertain bias error in temporal and/or spatial field results
interpolation, integration, trend extrapolation, etc.

e Uncertain bias in inferring the full population of a random
quantity (e.g. a frequency distribution or probability density)
from limited data samples

e Uncertain bias error in uncertainty propagation and
aggregation procedures that combine data measurement,
processing, and inference uncertainties

public domain records show the EASA ESF and/or the FAA ELOS have been applied to many certification
projects (for the FAA, see Ref. 5). Therefore the industry is already addressing the topic of modeling errors
for this particular application. However, as flight modeling technologies improve, offering a potential increase
in viable applications, UQ tools and processes can serve as a valuable part of the analysis to assess whether
a given modeling process is robust enough for a particular application.

This paper introduces some important aspects of UQ that are often encountered in engineering prac-
tice and that are important to certification by analysis. A level of understanding of the four elements of
uncertainty quantification outlined above, appropriate to the application, is crucial to the success of any
uncertainty quantification efforts; each of these elements will be expanded upon in the following sections.

II.A. Identification

The first step in any UQ analysis is to identify the sources of uncertainty which may contribute to uncertainty
in the output quantity of interest. Table 1 summarizes various commonly encountered sources of uncertainty
in experiments and experimental data; Table 2 summarizes sources of uncertainty in models and simulations.
The overview in the remainder of this section adds context to many of the entries in the tables.
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Table 2. Some sources of uncertainty in models and simulations.

Source of Uncertainty Description

Phenomenological modeling Examples:
uncertainty expressed through

use of multiple model forms e Employing different plausible turbulence models

e Multiple equation-of-state models or material constitutive
models

e Geometry models (model A with bolts explicitly modeled vs.
model B without explicit bolts)

Uncertain values for model Examples:
input parameters, or multiple

values for input parameters e populations of values described by frequency distributions

e manufacturing tolerances and variability

Model form and Whatever the model form and parameter values, the approximations
parameter-related involved will generally result in some degree of prediction bias even
prediction-bias uncertainty if the mathematical equations are solved exactly and initial and

boundary conditions inputs to the model are exact. (Model
validation seeks to quantify model prediction bias; model calibration
and/or result correction approaches seek to reduce it.)

Numerical solution-bias This is associated with spatial and temporal discretizations and

uncertainty incomplete iterative convergence of the discretized equations being
solved. (This is what Solution or Calculation Verification seeks to
quantify.)

Simulation results processing Examples:

and inference uncertainties o )
e Uncertain bias in temporal and/or spatial field results

interpolation, integration, trend extrapolation, etc.

e Uncertain bias in uncertainty propagation and aggregation
procedures for the modeling and simulation uncertainties above

II.B. Characterization

In general, there are two forms of uncertainty — aleatory and epistemic — which can be defined as:

Aleatory — A type of uncertainty which is due to inherent, irreducible chance. Probabilistic in
nature, and most commonly described by a probability density function (PDF) or cumulative
distribution function (CDF).

Epistemic — A type of uncertainty which is due to lack of knowledge and is potentially reducible.
These can be represented probabilistically or non-probabilistically. Probabilistic epistemic uncer-
tainty may be represented by a CDF or PDF that reflects subjective estimates or beliefs about
the probabilities associated with a quantity taking a particular value. Non-probabilistic epistemic
uncertainty is commonly described by an interval with lower and upper bounds, but with no
probabilistic information assumed between.

The characterization step includes both the aleatory / epistemic categorization and the mathematical de-
scription of the identified sources of uncertainty. In general the mathematical description of uncertainties
will be in one of the forms described above in the aleatory and epistemic definitions. Note that all aleatory
uncertainties are probabilistic, but not all probabilistic uncertainties are aleatory. In worst-case analysis
studies, which are common in engineering practice, choosing a set of worst-case input parameters is equiv-
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alent to choosing a very high or very low probability level from a distribution (for aleatory or probabilistic
epistemic uncertainties) or to choosing a lower or upper bound of an epistemic interval (for non-probabilistic
epistemic uncertainties).

A simple example can help demonstrate the differences between aleatory and epistemic uncertainty.
Consider the uncertainty in the value of a six-sided die. If the die is rolled, it has an inherent, irreducible
chance of landing on any number one through six, with equal probability if the die is fair; this would be
considered an aleatory uncertainty. Contrastingly, if a die were placed on a table non-randomly and covered
up (that is, the number facing up is controlled by the placer instead of being random), there is still uncertainty
in its value, but the uncertainty is due to lack of knowledge and can be reduced by questioning the placer
or uncovering the die; this case would be considered epistemic.

A special case of uncertainty characterization and treatment occurs when both aleatory and epistemic
uncertainties are present in an analysis. The combination of aleatory and epistemic uncertainty is called
Mixed Uncertainty, and it requires different treatment than purely aleatory or purely epistemic uncertainties.
Returning to the die example, if a die is known to be weighted (which changes the probability of rolling 1,
2, 3,4, 5, or 6), but the exact nature of the weighting is unknown, then there exists a specific, but unknown
(epistemically uncertain) probability distribution for the random (aleatory uncertain) result of rolling the
die.

If the uncertain result of the die is to be used in another analysis, then the results of the subsequent
analysis will also be uncertain. The translation of uncertainty in the die result to uncertainty in the analysis
results must be performed using an uncertainty propagation method.

Examples of aleatory sources of uncertainty in the context of aerospace engineering might include at-
mospheric conditions and manufacturing or flight test instrumentation variability from one aircraft to the
next. Examples of epistemic sources uncertainty might include discretization error in computational mod-
eling, model form error such as a turbulence model that results in an inaccurate extent of smooth-surface
flow separation in a CFD analysis, or the omission of unsteady aerodynamic terms in a flight simulation
model. When both aleatory and epistemic uncertainty are present in one analysis which is used to inform
another analysis, then the inputs to the second analysis are mixed. For example, a CFD simulation with
uncertain geometry and turbulence model parameters yields mixed uncertain outputs for aerodynamic force
and moment coefficients, which may then be used as inputs to a flight dynamics simulation code to assess
aircraft maneuvering performance.

II.C. Uncertainty Propagation and Aggregation

During the uncertainty propagation step, methods are employed to translate the characterizations of the
identified sources of uncertainty into estimates of uncertainty in output Quantities of Interest (Qol). The
resulting uncertainty may then be aggregated at the level of the output results, such as model-discretization-
related solution uncertainty, model-form-related prediction-bias uncertainty, etc. Uncertainty roll-up (see
Figure 1) consists of all uncertainty propagations and aggregations in quantifying the cumulative uncertainty
associated with experimental or simulation results. The figure illustrates the distinctions between uncertainty
propagation, aggregation, and roll up. The figure involves a general case where continuous interval and
probabilistic uncertainties (PDFs) are propagated along with discretely represented uncertainties.

The uncertainty propagation step for mixed uncertainty problems is complicated due the need to sep-
arately treat the aleatory and epistemic sources of uncertainty in analysis results. The literature contains
contemporary uncertainty propagation methods for continuous probabilistic uncertainty in computational
applications, including sampling methods,”® spectral response surface surrogate-model based methods,'? 1!
quadrature methods,'?'? non-spectral, non-quadrature based methods,'* 7 and optimization-based relia-
bility methods.'® 2 Refs. [21,22] demonstrate propagation and aggregation of probabilistic discrete un-
certainties and non-probabilistic interval uncertainties. If epistemic uncertainty (e.g., interval or subjective
probability) is propagated in addition to frequency-based aleatory uncertainty, then various potential PDFs
of aleatory response will exist, as indicated at right in Figure 1. This normally requires dual-level propaga-
tion approaches.?3 26 Alternative representations of this type of mixed uncertainty are often advantageous
for conciseness of the uncertainty representation and to reduce propagation cost (e.g., Probability Box (p-
box) representations?” %), Figure 2 shows a p-box representation of mixed aleatory-epistemic uncertainty
resulting from one common mixed-uncertainty propagation approach called the Second-Order Probability
(SOP) method.?*
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Figure 1. Example of uncertainty roll-up with predicted response assessed against safety or performance requirement
(adapted from Ref. 6).

II.D. Analysis

The analysis involved in UQ typically represents the majority of the effort, and can be classified into several
sub-analyses, such as sensitivity analysis, UQ-based resource allocation, model validation and calibration,
and margin assessment.

Once the various uncertainties in a model or analysis have been identified, their form characterized, and
then propagated and aggregated, it can be useful to determine which uncertainties contribute the most to
the total uncertainty. This is typically referred to as Sensitivity Analysis. Sensitivity analysis (SA) is defined
for the present purposes as:

Sensitivity Analysis — the determination of how much uncertainty an individual source con-
tributes to the total uncertainty in a simulated or experimental quantity of interest (QolI). Infor-

mation on specific methods for sensitivity analysis can be found in representative references such
as Refs. [32-36].

SA enables resources to be focused on characterization and/or propagation of the most influential un-
certainty sources. Frequently, it arises naturally as an output of the UQ analysis. The parameter variation
studies common in engineering practice are a form of SA. A simple means of addressing modeling uncertainty
is to use a sufficiently conservative combination of input parameters to determine a conservative output value
for the Qol. However, this approach requires the uncertainty in Qol to vary in a known manner with respect
to each input parameter in order to ensure the intended level of conservatism is achieved. If the Qol variation
with input parameters is in not well understood, then a sensitivity analysis covering the range of uncertainty
in the relevant model input parameters should be employed.
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Figure 2. Flowchart describing the various aspects of Second-Order Probability (adapted from Ref. 31).

A related process, UQ-based resource allocation, involves UQ and SA as forward analyses in an inverse
problem. The goal of UQ-based resource allocation is as follows:

UQ-Based Resource Allocation — addresses the quantification, management, and optimization
of experimental, analysis, and computational resources such that their value-added impact on total
Qol uncertainty is adequately estimated and used to prioritize activities and resources to most
cost-effectively quantify, control, and reduce uncertainty.

Improved methods for UQ-based resource allocation in engineering practice is an active area of research
and development.3” 3% The top row of Figure 3 shows a linking between uncertainty quantification, sensitivity
analysis, and UQ-based resource allocation.

Referring to the bottom row of Figure 3: uncertainty categorization, representation, propagation, and
aggregation have been discussed in the preceding sections. This section discusses the other topics in the
bottom row of the figure: solution bias uncertainty estimation, prediction bias and uncertainty due to model
form, extrapolation and performance margin UQ.

For numerical models (such as CFD and FEM), solution bias error and the uncertainty associated with its
estimation typically comes from spatial and/or temporal discretization of the governing continuum physics
equations and of mathematical descriptions of geometry, and from incomplete convergence in iterative so-
lutions of the discrete equations due to non-zero error tolerances needed for computational affordability.
Solution bias error is what “Solution” or “Calculation” Verification attempts to quantify; see Refs. [40-46].
Sources of error which are quantified include discretization error, convergence errors, machine precision or
round-off error, and coding errors.*® Richardson extrapolation is a common method for estimating dis-
cretization error.#142 A framework for quantifying discretization error based on Richardson extrapolation
can be found in Ref. [44], while an example implementation of that framework can be found in Ref. [40]. It
is noted that convergence error (also known as iteration error) has an effect on the discretization uncertainty
estimation, thus quantifying discretization uncertainty requires iterative convergence.*® A general rule of
thumb is to ensure that the convergence error for a given calculation is negligible when compared to the
estimate for the discretization error; Ref. [44] recommends at least one order of magnitude smaller. Ref. [46]
discusses assessment and management of discretization related error over a large parameter space of analysis
with the model, such as in optimization and/or uncertainty propagation. Round-off, or machine precision
error, is typically negligible when compared to discretization error and convergence error. Coding errors are
typically “unknown errors,” as they are corrected as soon as they are discovered. They are thus very difficult
to estimate; see Ref. [1].

Uncertainty often exists regarding the most appropriate way to mathematically represent or model par-
ticular physical phenomena, geometry, boundary and initial conditions, materials properties and behaviors,
etc. This representational “model form” uncertainty, per the nomenclature in Table 2 and Figure 3, is some-
times explicitly expressed through the presence and use of multiple candidate model forms that are distinct
from each other. That is, they are not simple variations of each other given by the same model form but
different numerical values for the parameters. In the literature and in this document, the term “model-form
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Figure 3. Some important aspects of UQ that can arise in analysis projects (reproduced from Ref. 6).

uncertainty” is sometimes meant to exclusively involve the mathematical structure of a model and at other
times may include both the mathematical structure of a model and the uncertainty in its parameter values
(which themselves may be considered models). More information regarding model form uncertainty can be
found in Refs. [45,47-54]. An example of applying model-form uncertainty to an industry-relevant problem
is described in Ref. [55]. Expert judgment is required to guide the use of the results from this approach, as
there is no general assurance that the results from the multiple model forms selected for analysis encompass
the “true” value for the output Qol.

A practical objective of model validation is to quantify prediction bias and uncertainty for an identified
Qol. This is accomplished by assessing the model at validation conditions that present relevant and significant
extrapolative tests of model predictive capability away from the calibration conditions. Relevant, in this case,
means that the extrapolation bias for other analysis cases of interest can be estimated from these validation
results. Validation quantification of prediction bias and prediction bias uncertainty should also include any
significant errors and uncertainties of measured, processed, modeled, and inferred elements of the validation
experiments, such as initial conditions (ICs), boundary conditions (BCs), geometries and output quantities
of interest.

The objective of model calibration is to reduce the quantified model prediction bias and uncertainty for
an identified Qol at a set of calibration conditions. Calibration is typically accomplished by adjusting model
inputs that are not fixed by the calibration experiment conditions and are thus available degrees of freedom.
In model calibration, model-form and/or parameter range constraints may prevent the model results from
exactly matching the data being calibrated to, whereupon a calibration “matching or fitting gap” occurs.
Calibration results and any fitting gap (often termed discrepancy) are functions of the calibration procedure
used and of any error or uncertainty in the inputs to, or performance of, the calibration model relative to the
experiments that is not addressed as a degree of freedom in the calibration itself. Correction functions are
sometimes applied to approximately correct Qol results for any fitting-gap discrepancy left after calibration
and before predicting with the model at conditions different from the calibration experimental conditions.
Validation seeks to quantify the model prediction-bias uncertainty due to the model form; calibration seeks
to reduce it.
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How to best use a model’s validation- or calibration- characterized prediction bias and uncertainty to
potentially adjust or bias-correct the model to mitigate prediction risk beyond the validation or calibration
conditions is a very difficult question and an active area of research. But ultimately, estimation of prediction
bias error and uncertainty at points where no experimental data exists should include extrapolation of
validation-quantified prediction bias/uncertainty (after any model and output Qol corrections for this), and
should also include estimated error /uncertainty associated with this extrapolation. Example references [24,
51,52,56-60] address these issues in terms of applied methodology and the presence of various heterogeneous
sources and types of uncertainty as itemized in the leftmost two boxes on the bottom row of Figure 3.

Estimation of the margin between system performance and important or critical performance, safety, or
failure thresholds is important in engineering design and safety analyses. An example of a margin assessment
circumstance for a given requirement or limit is shown at right in Figure 1. Another example using p-boxes
is shown in Figure 4. Per the examples, margin analysis is often accompanied by significant uncertainty in
model predictions of system performance. Significant uncertainty may also be present in critical threshold
limits for system degradation or failure. Engineers are frequently interested in the probability that a design
exceeds some performance threshold, or perhaps a threshold with a factor of safety. Therefore, margin
analysis is an important and distinct type of UQ analysis, just as solution verification and model validation
are. Margin analysis can also have bearing on model acceptability and/or need for refinement, depending on
the magnitude of prediction uncertainty relative to the magnitude of the predicted margin. Representative
references that describe margin uncertainty analysis include Refs. [61-63].

Finally, in many real engineering applications of UQ, simulation and experimental practitioners are
very limited to the true precision or accuracy that can be claimed in UQ characterizations of model and
experimental inputs and analysis outputs, especially when many heterogeneous types of uncertainties are
involved. Consequently, the outcome of UQ is the enablement of modelers and analysts to make useful
and more informed (though perhaps not precise) statements about the uncertainty and associated degree of
credibility they have in their analysis-based predictions. As modelling technology continues to advance and
become applicable to more and more complicated applications, the concepts and tools of UQ will be critical
to guiding its appropriate use.

III. Examples with Results Computed

In this section, the methods and considerations discussed in Section II are applied to two realistic engi-
neering problems. Both problems involve the NASA Common Research Model (CRM),% an open geometry
developed by Boeing and NASA which is representative of a modern commercial transport aircraft. Multiple
configurations of the CRM have been designed and experimentally tested for the ATAA Drag Prediction
Workshop Series®> 66 and the ATAA High-Lift Prediction Workshop Series.5”:68 The first example problem
investigates the uncertainty in CFD drag predictions of the High Speed CRM,%? which is designed to fly
cruise Mach number of 0.85 at a lift coefficient of 0.5. The second example problem assesses the uncertainty
in High Speed CRM and High-Lift CRM (HL-CRM)™ wind tunnel corrections. Images of the High Speed
CRM and HL-CRM geometry are included in Figure 5.

III.A. TUncertainty in CFD Predictions of Transonic Cruise Drag

For a large, generic, twin-engine transport aircraft, a 1 count (0.0001) decrease in drag coefficient (Cp)
amounts to roughly 200 lbs increase in payload capacity.” The average American weighs around 185 lbs.™
Therefore, accurate predictions of drag are essential in determining the potential passenger capacity (which
equals economic value) for commercial aircraft designs.

There are many potential sources of error and uncertainty in CFD simulations. In this example, the
following are considered:

e Freestream conditions. Specifically, Mach number (M), angle of attack («), and angle of sideslip (3).
e Spalart-Allmaras (S-A)™ turbulence model coefficients. Specifically, o, &, and c,3.

e Grid convergence error
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(a) High Speed CRM geometry. (b) HL-CRM geometry.

Figure 5. High Speed and High-Lift NASA Common Research Model geometries.

The flow solver used in this example is the Boeing-developed BCFD code,” version 8.0. BCFD is an
unstructured, grid cell-centered, three-dimensional, finite-volume RANS code capable of solving steady and
unsteady Euler, laminar, or turbulent flows. The code allows changes to the values of the S-A turbulence
model coefficients to support uncertainty analyses. Multiple cases from the NASA Turbulence Model Re-
source (TMR) webpage™ have been used to verify the S-A implementation.

All freestream conditions are assumed to be aleatory uncertainties, with normal distributions given by

M = N(0.85,0.0005) (1)
a = N(2.3103°,0.008°) (2)
B =N(0.0°,0.01°) (3)

where N (m, s) is a normal distribution with a mean of m and standard deviation of s. The distributions
for M and o are estimates based on the work by Walter et al.,”® and the distribution for 8 was provided
by test engineers* at the NASA Langley National Transonic Facility (NTF), where a large amount of the
High Speed CRM wind tunnel experiments took place. Nominal conditions of M = 0.85, a = 2.3103°, and
B = 0.0° correspond to the designed cruise lift coefficient of C', = 0.5 for the wing-body-tail0 configuration.

A characterization of uncertainty in S-A turbulence model coefficients is described by Schaefer et al.””
Each of the three coefficients is consisdered to be an epistemic interval given by

o €[0.6,1.0] (4)
K € [0.38,0.42] (5)
Cus € [1.75,2.5] (6)

The intervals for o and c,3 were chosen based on the recommendations of Spalart and Allmaras.”™ Bailey
et al.”® determined that x = 0.40 4 0.02 in their turbulent pipe flow experiments. In private communication
with the first author!, Philippe Spalart (a co-author of the S-A model) confirmed that these bounds on
turbulence model coefficients are physically realistic. Additional relations between o, k, and four other S-A
coefficients are enforced and are described by Schaefer et al.””

Grid convergence error (G) is characterized as an epistemic uncertainty. Its effects can be modeled as a
linear function of some epistemic variable ¢ € [—1, 1], where

G(¢) = ¢ # (Error Estimate) (7)

The error estimate is computed using the Roache grid convergence index (GCI) method described by Celik
et al.,** and the ASME V&V 20 Standard,*® as discussed in Section IL.C. In a sequence of three grids,
the GCI method computes an error estimate for the finest grid solution, resulting in an epistemic interval
centered at the finest grid solution. An argument could be made that the interval ought to be centered at

*Private communication between Joe Morrison, Melissa Rivers, Andrew Cary, and John Schaefer 2016.
TEmail correspondence between Philippe Spalart and John Schaefer, June-December 2014.
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the extrapolated solution for well-behaved grid convergence sequences; however centering the interval at the
finest grid solution protects against the possibility that the asymptotic region may not have actually been
reached.

To propagate uncertainty, multiple methods were employed. All three components of C'p uncertainty
(freestream, S-A, and grid convergence) are assumed to be orthogonal to each other; their combined effects
are assumed to be purely additive. This assumption ignores any interactions between the three groups of
uncertainty sources, however it reduces the sampling cost required to perform the analysis. Propagation
of freestream uncertainty is performed using the point-collocation non-intrusive polynomial chaos (NIPC)
method!? 1! with a second order polynomial fit and an oversampling ratio of 2.0. Given these choices, and the
three sources of freestream uncertainty (M, «, B), NIPC requires 20 CFD solutions for the propagation of
freestream uncertainty. NIPC was also used for the propagation of S-A turbulence model uncertainty. Once
again using a second order polynomial, oversampling ratio of 2.0, and three uncertain dimensions (o, K, ¢y3),
an additional 20 CFD solutions were required. As described above, uncertainty due to grid convergence error
was computed using Richardson extrapolation and the Roache Grid Convergence Index, as described by Celik
et al.** Medium, fine, and x-fine grid solutions were required to perform this computation. The number of
cells in the medium, fine, and x-fine grids is Ny, = 22.3, Ny = 55.5, and Ny = 109.4 million, respectively;
a representative length-scale of N—2/3 was employed. Although not required for uncertainty propagation,
a coarse grid solution was also run to ensure asymptotic behavior of grid convergence across four grids. In
total, 43 CFD solutions were required to propagate the uncertainty in the seven dimensions considered in
this example (1 medium grid, 1 fine grid, and 41 x-fine grid solutions).

The results of the three CFD uncertainty propagations are shown in Figure 6. For reference, the nominal
drag coefficient (from an x-fine solution at the nominal flight conditions with the nominal S-A coeflicients)
is Cp = 272.22 counts. The 95% confidence interval on Cp from the freestream uncertainty propagation
is [270.32,274.13] (Figure 6a); the epistemic interval for the S-A uncertainty propagation is [270.17,273.04]
(Figure 6¢); and the epistemic interval for the grid convergence error propagation is [270.93,273.50] (Fig-
ure 6d). The widths of these freestream, S-A, and grid convergence intervals are 3.81, 2.87, and 2.57,
respectively, indicating that uncertainty in C'p due to the freestream conditions is slightly larger, but on the
same order of magnitude as the uncertainty due to S-A coefficients and grid convergence error.

Since the groups of Cp sources of uncertainty (freestream, S-A, and grid convergence) are assumed
to be independent of one another, their effects can be combined in an additive manner. First, the CDF
resulting from freestream uncertainty is shifted left and right by amounts equal to the differences between
the S-A epistemic interval bounds minus the nominal S-A solution. Next, the left and right bounds of the
resulting p-box are further shifted left and right by the differences between the grid convergence epistemic
interval bounds and the x-fine solution (which is the same as the nominal S-A solution). An aggregated
p-box resulting from this build-up of uncertainty is shown in Figure 7. This aggregated p-box has a 95%
conservative confidence interval (CCI) of [267.00, 276.26], which has a width of 9.26 counts (as described by
Cary et al.,>! a CCI is defined by taking the lower probability level from the left-bounding CDF of a p-box
and the upper probability level from the right-bounding CDF of a p-box). The solid CDF in the middle of
the p-box is the same as the freestream CDF shown in Figure 6a; the blue-shaded region enclosed by the
dash-dot line is the aggregation of freestream and S-A uncertainty; and the orange-shaded region enclosed
by the long-dash line is the aggregation of freestream, S-A, and grid convergence uncertainty.

To analyze the results of the uncertainty propagation and aggregation, comparisons are made to experi-
mental data. Wind tunnel testing was performed on the High Speed CRM at both the NASA Langley NTF
facility and the NASA Ames 11-foot facility. These test campaigns utilized the exact same test article, and
both tunnels were operated at identical Reynolds numbers. Limited replicate data points were collected at
the M = 0.85, C, = 0.5, Re = 5 x 10° condition during testing at both facilities (NTF Test 197, Runs 92,
97, 99 and Ames 11-foot Test 216, Runs 76, 77, 80, 83). Data collected during these tests is availabile for
download at the NASA CRM website.%* Acheson and Balakrishna™ describe the repeatability of individual
measurands collected during both tests; at the NTF, the 20,,, Cp repeatability is reported to be & 3.4 drag
counts, and in the Ames 11-foot, the 20,,, Cp repeatability is reported to be £ 2.2 drag counts. These
repeatability figures are attractive because of their relatively easy interpretability, but understanding the
full experimental data UQ problem may require wind tunnel expertise; for this reason, wind-tunnel experi-
mentalists and UQ specialists such Vassberg et al.,6 Walter et al.,”® and Acheson and Balakrishna™ should
be directly involved in order to make the most appropriate validation comparisons to simulation results.
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Figure 6. CFD Drag Prediction: Uncertainty propagation results for Cp (shown in counts).

According to Walter et al.,”® the NTF uncertainty model at the time of the High Speed CRM experiments
required a better description of systematic uncertainties so that data could be properly compared to data
from other test facilities. Furthermore, there appears to be a systematic bias between the NTF and Ames
11-foot results. With these observations in mind, the NTF and Ames 11-foot Cp repeatability data are
treated as separate uncertain experimental results. The experimental data points from each facility (three
from NTF, four from Ames 11-foot) are sorted in ascending order and used to contruct an empirical CDF
for C'p. Since Walter et al. indicate that the repeatability figures do not include systematic uncertainty, the
individual data points are interpreted to be samples from a distribution with no epistemic uncertainty. Note
that the difference between the maximum and minimum Cp at the NTF and Ames 11-foot are 1.9817 and
1.7419 counts, respectively; these are well within the repeatability figures reported for the test facilities at
which each data set was collected. Once the empirical experimental CDFs have been contructed, they may
then be used to compute validation metrics for the CFD drag prediction. Plots showing the experimental
CDFs and the area validation metrics' 24 for each facility are included in Figure 8. In this example, the area
validation metric for the NTF data has a value of 0.6146 drag counts and the area validation metric for the
Ames 11-foot data has a value of 9.9866 counts.

An alternative to the area validation metric is to use the Real Space (RS) model validation approach,?!»5°
which focuses on comparing percentiles of experimental and predicted behaviors of stochastic systems possess-
ing inherent random variability (aleatory uncertainty). RS also treats deterministic systems, as a reduction
of the more general stochastic case. Comparison of relevant percentiles is especially pertinent for models to
be used in the analysis of performance and safety margins. These types of validation problems also usually
involve substantial epistemic uncertainty due to lack of knowledge. The RS methodology handles these and
many other categories of uncertainty itemized in the leftmost two boxes in the bottom row of Figure 3.

Results of the RS method applied to the CFD drag prediction problem are shown in Figure 9. The
uncertainty bars for the 2.5 and 97.5 percentiles of the model-predicted drag coefficient in the figure are
formed from the CFD prediction results in Figure 7. These are used for expediency in this paper, although
the RS method would segregate, propagate, and represent various uncertainty categories somewhat differently
(but with effectively the same results as in Figure 7 for this particular problem). Although the uncertainty
bars for the predicted 2.5 and 97.5 percentiles of drag overlap graphically, it must be kept in mind that
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Figure 7. CFD Drag Prediction: Aggregated p-box for Cp resulting from combination of all sources of uncertainty.

these uncertainties are perfectly correlated; if the epistemic uncertainties related to numerical/discretization
effects and turbulence modeling parameters could be eliminated, then point values for the predicted 2.5 and
97.5 percentiles would result at some equal percentage of the way between the lower and upper bounds of
each percentile’s interval. Thus, despite the graphical appearance, it is not the case that the predicted 2.5
percentile of C'p could, for example, lie above the predicted 97.5 percentile.

For the experimental results, ~90% confident! statistical tolerance intervals (TIs) for the central 95%
of behavior between the 2.5 and 97.5 percentiles of an asymptotically large population of C'p test results
are inferred for the AMES data points and separately for the NTF data points. The TI constructed from
the four AMES data points has endpoints [254.9, 262.9]. These endpoints correspond to 90% confidence
on the lowest value of the 2.5 percentile and 90% confidence on the highest value of the 97.5 percentile,
respectively. This range is about 81% larger than the AMES facility’s reported repeatability uncertainty of
+ 2.2 drag counts; the 81% larger range is not unreasonable given the very few data points (only four) it
was constructed from, and the fact that TIs from very few samples are necessarily conservatively broad in
order that they contain the true central 95% of behavior with a high ~90% confidence. The three NTF data
points give a 95/90 TI of [261.3, 275.3], which is about 100% larger than the range of + 3.4 drag counts
stated repeatability of that facility.

For the 2.5 percentile of Cp, the inferred ~90% confident lower bounds on the experimental results from
both facilities (bottoms of their TIs) are far below the model predicted uncertainty range (left half of Fig 9).
Thus, the model prediction uncertainty does not likely contain the lower-end responses (as represented by
the 2.5 percentile) of the asymptotically large populations of facility test results. Nor do the model prediction
results bound this lower-end of the population from below. The TI 97.5 percentile results at right in Figure 9
can also be used as 100% confident upper bounds on the 2.5 percentiles of the experimental populations.
Then the model predictions are shown to bound the upper-most possible 2.5 percentile value for Cp in the
AMES facility, but not for the NTF facility.

I This cited confidence level is a nominal value that is only accurate if the distribution being sampled is a Normal distribution.
We do not know the distribution shape from which the AMES or NTF data samples come. Although derived for Normal
populations, 95/90 TIs will span the central 95% ranges of many other sparsely sampled PDF types with reasonably /usefully high
odds or confidence. For instance, 89% of 144 PDFs (including highly skewed and multi-modal highly non-Normal distributions)
studied in Refs. 80 and 81 had empirical confidence levels of 75% or greater with 95/90 TIs and N = 4 random samples.
From studies in Ref. 81 on several representative PDFs it is projected that 90% of the 144 PDFs considered would have
confidence levels > 85% with 95/95 TIs and N = 4 random samples. Reliability rates of 75% or 85% are often adequate to
sufficiently manage risk, especially if conservatism from other sources exists in the analysis or results — such as applied factors
of safety, and/or large indicated design, safety, or performance margins from high-quality analysis, and/or when several sources
of uncertainty are present where each involves sparse data conservatively treated with the TI method.
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Figure 8. CFD Drag Prediction: Comparison of experimental and CFD p-boxes for Cp, with area validation metric
shaded green.

For the 97.5 percentile of drag, the model predicts larger drag than inferred from the AMES facility
(see right half of Figure 9). This could be considered an error on the conservative side of things for design
and analysis purposes because the model would not under-estimate the higher-end drag coefficient values
(according to this facility). Conversely, an over-prediction in Cp may result in a less optimal airplane due
to design decisions based on the inaccurate information. Within the model prediction uncertainty range, an
over-prediction margin of about 7.9 to 13.4 counts exists in Cp. The validation conclusion is provisionally
the same for the case with NTF data, although qualitative differences exist; the NTF TI upper end falls
within the model-predicted range (with a small margin of 1.0 drag counts). If the analyst uses the upper end
of the model-predicted range to be at the conservative end of the prediction uncertainty in design or safety
analysis, then this conservatively bounds (from above) the NTF’s conservatively inferred 97.5 percentile of
drag.

Given the area validation metric results in Figure 8 and the real-space validation results in Figure 9, what
should the CFD practitioner do next? Presumably, the CFD practitioner wishes to improve the accuracy and
reduce the uncertainty of the predictions (i.e., reduce the area validation metric or the differences between
experimental and CFD 2.5 and 97.5 percentiles). One option is to use a finer grid; from Figure 6b, it is
apparent that continuing to refine the grid will reduce Cp further, trending it closer towards the experimental
data in Figure 8 or the 2.5 percentiles of the experimental TIs in Figure 9. Output-based grid adaptation
may also be employed to reduce the grid convergence error. Another option may be to perform calibration
of the S-A turbulence model coeflicients; perhaps a set of coefficients exists within their physically realistic
bounds which yields lower, more accurate predictions of Cp for transonic commercial aircraft geometries.
Sobol indices®® are easily computed from the NIPC response surfaces generated for the freestream and S-A
uncertainty propagations, and these may be used to guide further refinement of the CFD model. If updating
or improving the model is not possible due to time or resource constraints of a project, then expert judgments,
analysis conservatisms, safety factors, etc. may be employed to argue the credibility of model results for their
intended use. Whatever route is taken, the inevitable issue of extrapolation will be involved to go forward,
and it will be necessary to factor in the considerations above into methods for extrapolation with UQ (as
discussed near the end of Section II).

ITI.B. Uncertainty in Wind Tunnel Wall Corrections

An important consideration in transonic wind tunnel testing is the wall interference correction, which ac-
counts for the presence of the test section boundary. For NASA Langley Research Center’s National Transonic
Facility (NTF), one of the facilities in which the CRM has undergone testing, the wall interference correction
is calculated using the Transonic Wall Interference Correction System (TWICS).82 This system uses measure-
ments from a 360 wall-mounted pressure sensors placed throughout the ceiling, floor, and sides of the tunnel
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Figure 9. Real Space model validation comparisons of model predicted and experimentally inferred 2.5 and 97.5
percentiles of Cp.

to estimate the blockage interference factor ¢ and make corrections to the angle of attack, sideslip angle,
and aerodynamic forces and moments.?? Although this system has been studied and validated extensively,
it assumes that there is no uncertainty in the pressure measurements used in the calculations.3? 86

Many factors can affect the accuracy of wind tunnel wall pressure measurements including instrument
accuracy, surface and orifice quality, leakage in the test section, and the operating dynamic pressure.®?
Uncertainty in these measurements leads to uncertainty in the wall interference correction, which then leads
to uncertainty in the aerodynamic forces and moments.8” For the pressure sensors located in the NTF, the
error in accuracy is estimated to be within 0.0025 psi, or 0.1% of the sensor range.?

To study the effect of uncertainty in the wall pressure sensors on the wall interference correction, the
error in each of the 360 pressure sensors, §; is treated as an independent uniformly distributed variable given
by

§; = U(—0.0025,0.0025) psi (8)

Using data from the NTF Test 197 Runs 92, 97, and 99 and the TWICS software, a Monte Carlo simulation
was conducted with 500 realizations of the wall pressure sensor errors for a range of angle of attack. This
allows for quantification of the uncertainty in the wall interference correction for Mach number and angle of
attack, which is then be used to calculate the uncertainty in the aerodynamic forces and moments.

The variation in the Mach number correction term, shown in Figure 10a is relatively small, with 95%
confidence bounds of [-0.001033,-0.001015]. When the corrections in Mach number and angle of attack
are used to calculate the corrections for lift coefficient, Cp, drag coefficient, Cp, and pitching moment
coefficient, Cjy, the effect is minimal. The cumulative distribution function for Cp, Figure 10b, shows that
the lift coefficient correction is not significantly influenced by uncertainty in the wall pressure measurement.
Although there were 500 realizations of the uncertainty in the wall pressure sensors, there was no change to
the lift coefficient correction in approximately half of these cases and only minor effects (to an output file
printing accuracy of 1078) in the remaining cases, resulting in a step-like cumulative distribution function.

Although the lift coefficient correction term is known to vary as a function of angle of attack, the effect
of wall pressure measurement uncertainty does not cause significant differences in the standard deviation as
a function of angle of attack. Figure 11 shows a comparison of the standard deviation of the lift coefficient
correction term calculated as a function of angle of attack to the standard deviation of the correction term
calculated across all angles of attack. This standard deviation is especially small when compared to the
value of the correction term, which is on the order of 107°. If accurate estimations of the uncertainty in the

§Private communication between Matthew Bailey and Casey Denham September 2019.
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Figure 11. Standard deviation of lift coefficient correction term, showing weak dependence on «.

force and moment coefficient terms at each angle of attack were required, additional simulation runs would

be necessary to ensure that results are properly converged. The sharp oscillations in the standard deviation
at low angles of attack are due to the output file accuracy and the number of uncertainty realizations.

Overall the wall interference correction is not sensitive to the estimated uncertainty in the wall pressure
measurement sensors, with only minor uncertainty in the correction terms. This indicates that the number
and accuracy of the sensors is sufficient to provide consistent results in the wall interference corrections.

Because the correction terms are known to vary as a function of Mach number, additional analysis would
be required to determine if the uncertainty in the correction terms is also dependent on Mach number.

This analysis demonstrates how uncertainty within a measurement can propagate through calculations and
generate results with different uncertainty distributions than the original uncertainty. It is an example of
use.

how UQ can be used to confirm whether or not the accuracy of instrumentation is sufficient for intended
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IV. Further Hypothetical Examples

In this section, two more example problems are described which are hypothetical in nature and do
not have results fully calculated. The purpose of these examples is to demonstrate how the methods and
considerations discussed in Section II may be applied to more complex types of analysis than those with
computed results in Section III. As before, both problems involve the NASA Common Research Model
(CRM).%* The first hypothetical example presents the first steps towards estimating the uncertainty in the
longitudinal stability and control characteristics of an aircraft. The second involes a FDS of roll maneuver
performance.

IV.A. Uncertainty in Longitudinal Static Stability Characteristics

Some of the most fundamental characteristics of any aircraft are its longitudinal stability and control (S&C)
characteristics. Longitudinal S&C behavior determines a number of critical aircraft criteria; for example, the
extents of the weight and center of gravity (c.g.) envelope, the maneuvering characteristics of the aircraft in
a given configuration, the loads on the aircraft, takeoff performance, etc. Understanding the uncertainty in a
potential aircraft’s S&C characteristics can be helpful in assessing the potential programmatic risk associated
with that design, whether those risks be to internal, customer, or regulatory requirements.

The example in this section will explore how accounting for uncertainty in the wind tunnel wall correc-
tions, the determination of which was outlined in Section III.B, can be used to determine the impact of those
uncertainties in the longitudinal static stability characteristics of an aircraft. Similarly to the TWICS wall
correction uncertainty analysis, this example will use data from the NASA CRM NTF 197 wind tunnel test.
Information on that test can be found in Ref. 88. In this example we examine three primary longitudinal
static stability characteristics and how they are influenced by the TWICS uncertainties: horizontal stabilizer
angle and angle of attack required to trim the aircraft at a specific Cp, the most aft c.g. which can be
trimmed using -2° to +2° of stabilizer travel, and the determination of the aircraft stick-fixed neutral point.
These are basic longitudinal static stability characteristics which will be examined by performing a bounding
analysis using the average standard deviations of the angle of attack, pitching moment coefficient, and lift
coefficient wall corrections determined from the tail = 0° CRM wind tunnel run at M = 0.85, Re = 5 x 106.
It is the hope of the authors that this simple example can provide engineers who may not specialize in
UQ methods with a foundation upon which to begin analyzing uncertainties and their effects within their
own analyses. Only the uncertainties due to the wall correction method are studied in this simple example,
however a discussion of additional sources of uncertainty which may influence longitudinal static stability
characteristics is presented at the conclusion of this section.

IV.A.1. Trim Orientation of Aircraft

This example will outline the determination of the stabilizer angle (elevator faired, as the CRM does not have
an elevator surface defined or tested) and angle of attack for an aircraft at a given lift coefficient (which can
also be thought of as an aircraft at a given weight and load factor). This is a classical S&C problem which is
the starting point for determining a number of aircraft flight characteristics; it determines whether a given
loading can be trimmed (and thus flown), it is the starting point for maneuvering characteristic analysis in
a given loading, and it is a starting point in the determination of wing and balancing tail loads in static
loads analyses. The trim characteristics of an aircraft can be solved with a textbook style simplification of
the longitudinal equations of motion.?? One can arrive at the following simplified longitudinal equations:

dCr, .

Cr = CL(“L:O) + W’}LZh (9)
dCp, .

O = C"L(ih:()) + mlh (10)

which assume that the aircraft is in steady, level, unaccelerated flight. These equations also ignore the force
in the x-axis, as the CRM does not have engines, making a determination of the thrust required to balance
drag inconsequential.

Eqn’s (9) and (10) are thus a function of two unknowns: the horizontal stabilizer angle, iy, and the angle
of attack, o (Note that Cr, Cr, _,, CL,, » Cm,, _,» and Cp,, ~are all functions of angle of attack. In many
textbook examples the C, and C,, terms are linearized with respect to «). In practice, it may be necessary
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Figure 12. CRM pitch and lift behavior at i;, = —2°, 0°, and 2° (M = 0.85, Re = 5 x 10°%), with trim points calculated for
a c.g. at the model reference point and Cr of 0.30 and 0.50.

to include drag terms in order to ensure that the aircraft’s engines can produce enough thrust at a given
flight condition to balance drag; however, the CRM model is not a real aircraft, and thus does not have
engines, necessitating a thrust-off analysis in this example. Note that the data used in this analysis does not
include the effects of the nacelles on the aircraft pitch and lift behavior.

The pitching moment and lift coefficient curves for three difference tail incidence angles, i, = —2°
(NTF197 Run 196), ip, = 0° (NTF197 Run 92), and ¢, = 2° (NTF197 Run 176) are shown in Figure 12. The
pitching moment curves shown are for a c.g. at the model reference point, which for the 2.7% scale CRM
model tested in the NTF is 35.8 inches back from the nose and 2.04 inches below the fuselage centerline.®
All of the values shown and used in this analysis are corrected using the TWICS method described in Section
III.B. Two trim points are shown, calculated using the two simplified equations previously shown. For the
wind tunnel model at the model reference point, a stabilizer angle of 1.54° and an angle of attack of 1.41°
are needed to trim the aircraft at a Cr, of 0.30, and a stabilizer angle of 0.66° and an angle of attack of 2.93°
are needed to trim the aircraft at a C, of 0.50 (which is the CRM design lift coefficient).%®

Next, the uncertainty values determined in the Section III.B are used to determine whether the uncer-
tainty in the wall correction terms have an appreciable effect on the trim orientation of the aircraft. The
following standard deviations are employed:

0o =3.03 x 107° (11)
oo, =4.93x107° (12)
oc,, =4.70 x 1077 (13)
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It is worth noting that these are average values of the standard deviation calculated for the entire range of
angle of attacks in the NTF Run 92 « sweep. However, the largest individual standard deviation was 2.68
times larger than the average used (in Cp ), which is not significant given the small magnitude of the standard
deviations. It is also worth noting that the standard deviation values used are for Run 92, with the CRM
in the tail=0° configuration only, and these values are applied to the tail=-2° and tail=2° configurations as
well. The use of consistent uncertainty characterization (i.e., the same values for o, o¢, , and o¢, ) across
all tail incidences is a reasonable assumption since the tail configuration likely does not affect the scatter
of corrections due to measurement uncertainty in the taps; however the nominal value of the corrections
(before applying uncertainty) should be applied on a per-tail-incidence basis, as the nominal corrections will
be configuration-dependent.

Returning to Figure 12, it is clear that a conservative bounding analysis (sometimes referred to as a
“worst-case” analysis) will occur when positive C, and C,,, uncertainties are superimposed on the data, as
this will reduce the available range of C, that can be trimmed at the model reference point. However, the
values of the uncertainties in the wall corrections are so small that even adding 460 and —60 to the baseline
curves does not affect the solution — the largest change seen is 0.001° in the stabilizer angle.

IV.A.2. Most Aft c.g. that can be Trimmed

In an analysis similar to the previous trim orientation example, the most aft c.g. which can be trimmed by
the -2° to +2° stabilizer travel limits tested in the NTF wind tunnel can be determined. For the purposes of
this example we will define the most aft c.g. limit as the point where there are no longer any valid trim points
that can be achieved using -2° to 42° stabilizer travel. Only the xz-coordinate of the c.g. will be examined.
For the CRM model with the same assumptions as those in the previous example, the most aft c.g. that
can be trimmed with +2° of horizontal stabilizer is approximately 17% c,¢y aft of the model reference point.
This trim point is at a stabilizer angle of +2° and an angle of attack of approximately 3.22°, corresponding
to a Cp, of 0.57. As with the previous example, the +60 and —60 uncertainty bands are so small that they
do not influence the calculation of the most aft c.g. which can be trimmed with +2° of stabilizer.

IV.A.3. Determination of Stick Fixed Neutral Point

For an aircraft to possess longitudinal static stability, the change in pitching moment of the aircraft with

regard to a change in angle of attack must be negative:*°

dCp,

T < 0 (14)

The stick-fixed neutral point is defined as the point where

dCy,
- 15
7o (15)

which is the aft most limit of the c.g. for the aircraft to possess longitudinal static stability.

For the CRM model analyzed using NTF runs 92, 176, and 196 in this example, the stick-fixed neutral
point lies approximately 32% c,.s aft of the model reference point. This point was determined using the
average of the dC,,/da slopes for all three tail incidences, with the slope calculated between « of around
-1.3° to +1.7°. Unlike the previous two examples, which examined the trim capability of the aircraft, a
conservative analysis regarding the longitudinal static stability and location of the stick-fixed neutral point
would be one in which the uncertainties result in a shallower dC,,/da slope. That being said, as with the
previous two examples in this section, an uncertainty band of +60 and —6c did not produce any appreciable
change in the location of the stick-fixed neutral point.

IV.A.4. Other Sources of Uncertainty in Longitudinal Static Stability

In this example a single source of uncertainty, the uncertainty in the wall corrections factors applied to the
raw wind tunnel data, was applied to three longitudinal static stability criteria in a simple bounding analysis.
The magnitude of the uncertainties, however, was so small that even at a +6¢0 interval there was no impact
on the longitudinal static stability characteristics analyzed. In fact, it is much more likely that the modeling
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assumptions (i.e., interpolating the tunnel data onto a common « basis, or linearizing the CLih and Cmih
terms) impact the results more than the wall correction terms could, although even this impact is likely
negligible. The calculation of this impact is not the purpose of this example.

In light of that, it is important to consider that this example is a simple, hypothetical example of
characterizing the impact of uncertainty on aircraft-level metrics. In practice there are a number of additional
uncertainties that may show up in an aerodynamic model, including, but not limited to:

e Instrumentation error and uncertainty (tunnel balance, repeatability of multiple runs)
e Differences in anticipated and actual flight wing shape in the tunnel

Wall corrections

Tare, interference, and mounting corrections

Buildup terms

Modeling simplifications, such as interpolating data to a common basis so that buildup terms can be
superimposed

In particular, buildup terms may introduce significant uncertainty. Each incremental effect (for example:
gear, nacelle, or fairing contributions) added to a model will carry with it its own associated uncertainty,
and the aggregation and propagation of these uncertainties through the model may become significant. The
uncertainties in each buildup term may be due to measurement uncertainty (i.e., each increment determined
from a tunnel run carries with it an uncertainty due to the measurement uncertainty of the runs it was
calculated from) or uncertainties due to the analysis used to determine the incremental effect (such as CFD,
which was explored at depth in Section III.A). Additionally, terms required for a more complete S&C
analysis, such as thrust for power-on analysis, will have their own unique uncertainties determined by the
particular model used to determine those effects. The four steps of uncertainty quantification outlined in the
beginning of this paper should be exercised for each uncertainty term that is to be included in the analysis.

The conclusion that the the uncertainty in the pressure measurements used for the wall corrections do
not significantly influence the simple longitudinal static stability characteristics examined in this example
should not be taken to mean that there is not significance in accounting for all uncertainties in a model,
but rather that the wall correction method appears to be robust against the uncertainty in the pressure tap
measurements that it is based on. An analysis of other uncertainty terms may yield different results, for
example, the standard deviation in the lift coefficient due to data repeatability reported by Rivers for the
NTF 197 and Ames 216 tests is on the order of 1073, which, while still small, is significantly larger than the
standard deviation in the wall correction terms.®® Other sources of error and uncertainty have presented
themselves in the CRM model as well, such as the pitching moment contributions due to the mounting sting
and wing twist, and will have a noticeable influence the longitudinal static stability characteristics of the
aircraft.91 92

The example in the following section outlines how uncertainties may be characterized and propagated
through a dynamic simulation of a roll maneuver, and many of the processes outlined in that example may
be appropriate for more complex longitudinal static stability and S&C maneuver analyses.

IV.B. Uncertainty in FDS of Roll Maneuver Performance

In this example, methods of characterizing the uncertainty in the time required for an airplane to execute
a specified roll maneuver (¢,) are explored. It is assumed that a flight dynamics simulation will be used to
assess the roll rate capability of an aircraft, and for the purposes of this hypothetical example, the problem
is simplified by assuming zero sideslip. The primary input parameters of interest for this analysis are:

e Rolling moment coefficient due to lateral control deflection (Cas,.cp)
e Aircraft moment of inertia about the roll axis (Ira)

e Roll damping coefficient (Crp)
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Table 3. Descriptions of terms used in FDS example approaches.

Term Description

Probabilistic parameters Parameters for which the uncertainty may be described using a
probability distribution

Interval parameters Parameters for which the uncertainty is described using an interval
or range of values

Extreme output case A set of input parameter values for a simulation or test that yields a
minimum or maximum value of an output parameter. Intervals are
bounded by the minimum and maximum extreme output cases.

Input parameter interactions Input parameters are considered to interact when changes in one
input parameter alter the sensitivity of an output to changes in
another input parameter. If inputs act independently on the output
then there are no input parameter interactions.

Surrogate model A mathematical model that predicts the responses of another
system. Often referred to as response surfaces, reduced order
models, statistical models, emulators, or machine learning models.

For this example, it is assumed that the uncertainties in the input parameters are all epistemic in nature
and that the goal is to describe an epistemic interval for the output. Further, it is assumed that Cys rop
and Ip4 may be described either as intervals or probability distributions based on prior data and that Crp
may be described as an interval based on some subjectively determined level of confidence.

The context of this example is predicting the behavior of an airplane that has not yet flown, based on
various analysis methods including use of empirical data from past designs. Due to the simple nature of this
example it is better seen as part of routine preparation for flight testing rather than as an analysis to be
used for certification, though the uncertainty quantification analysis could be similar for either case.

This example describes six general approaches for performing the analysis in order to illustrate differences
in prerequisite assumptions, simulation resource requirements, and results. Additional uncertainty propaga-
tion methods for different scenarios may be found in literature.>* 3 Descriptions for some of the terms used
in these approaches can be found in Table 3.

1. Traditional interval-only analysis assuming known extreme cases.
2. Interval-only analysis assuming unknown extreme cases.

3. Uncertainty propagation across mixed probabilistic and interval input parameters assuming known
extreme output cases for the interval inputs.

4. Uncertainty propagation across mixed probabilistic and interval parameters assuming unknown extreme
output cases for the interval inputs and no input parameter interactions.

5. Uncertainty propagation across mixed probabilistic and interval parameters assuming unknown extreme
output cases for the interval inputs and unknown parameter interactions.

6. Surrogate model-based uncertainty propagation across mixed probabilistic and interval parameters
assuming unknown extreme output cases for the interval inputs and unknown parameter interactions.

The following sections walk through the approaches listed above and provide graphs visualizing the inputs
and output result. The first two approaches treat interval only scenarios while the later four treat mixed
probabilistic and interval scenarios.

IV.B.1. Approach 1

A traditional uncertainty analysis assuming known extreme cases would consist of two simulations estimating
the upper and lower bounds of the output (¢.) based on known extreme combinations of the inputs (Ira4,
Curep, Crp). This is typically done when it is known that the input-output relationships are monotonic,
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Figure 13. Schematic of FDS example problem Approach 1.
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Figure 14. Schematic of FDS example problem Approach 2.

that there are no complicating input parameter interactions, and that the input uncertainties are epistemic
intervals (non-probabilistic). The results of this method are an expected interval range of the output with
no information about confidence bounds. While this method uses few simulations, the reliability of its
results requires a high degree of a priori confidence in the behavior of the system over the uncertain ranges.
Furthermore, when compared to more advanced UQ treatments, worst-case interval UQ analysis can lead
to unrealistically large uncertainty ranges and unnecessarily severe bounds on output quantities when more
than two or three uncertain factors are involved. A schematic of Approach 1 is shown in Figure 13.

IV.B.2. Approach 2

In instances where the inputs are considered epistemic intervals and the extreme cases are unknown, a number
of options exist for determining the output interval. A common method is to apply upper and lower bounds
to each of the three input parameters and analyze all combinations as in a factorial design. Alternatively,
the analyst could determine the sensitivity of the output quantity of interest to each of the input variables
separately, and based on those 3 initial calculations, determine the two combinations of input parameter
extremes that are expected to give the high and low output extremes. This results in only 5 calculations
instead of the 8 required to test all combinations. The computational savings of this approach grow as the
number of input parameters increases. Approach 2 has potential pitfalls; to be used reliably, this method
relies on monotonic behavior and lack of interactions and reduces to Approach 1 given the availability of
slope/trend information in each input variable direction. If any of these conditions do not apply, then it
becomes necessary to identify the minimum and maximum outputs over the input interval space. In these
cases, design of experiments (i.e. multi-level factorial, central composite, LHD), surrogate modeling, or
optimization techniques must be employed — see Ref. 94 for examples. A schematic of Approach 2 is shown
in Figure 14.

In some situations, it is possible to apply probability distributions to some of the inputs and not others
such that the uncertainty propagation must be performed across mixed probabilistic and interval input
parameters. For the remaining four approaches, it is assumed that probability distributions for Ir4 and
Cwm,nop can be meaningfully approximated based on a combination of expert knowledge, data from previous
aircraft programs and analytical tools. The Crp is still assumed to be an interval uncertainty.
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Figure 15. Schematic of FDS example problem Approach 3.

IV.B.3. Approach 3

The simplest scenario for a mixed distribution/interval problem is when the extreme output cases for the
interval inputs are known and there are no interactions between parameters. For this example, the behavior
of ¢, with respect to Crp would be known such that extreme case analysis is viable for Cgrp. Given these
assumptions, the most computationally efficient method is to decouple the propagation:

a) Propagate the probabilistic uncertainties given some nominal value of the interval uncertainty using
direct Monte Carlo sampling or another technique (see Ref. 34 for examples) depending on the resources
and information available.

b) Propagate the interval uncertainty given some nominal value of the probabilistic uncertainties by
running the known extreme cases for the interval parameters.

c¢) Superpose the probabilistic uncertainty distribution on the results of the interval propagation.

d) Truncate the probabilistic component at reasonable PDF /CDF tail values to form an equivalent interval
uncertainty for the output. This is recommended as the inputs are all epistemic in this example
problem, yielding an epistemic output.

A schematic of Approach 3 is shown in Figure 15.

IV.B.4. Approach 4

The fourth approach relaxes the assumption in Approach 3 regarding knowledge of the extreme cases of
the interval parameters but still assumes no parameter interaction. This is the equivalent of the change
in assumptions between Approaches 1 and 2 and results in similar changes in the analysis. The change in
assumptions alters the four-step process outlined for Approach 3 by introducing the need to identify extreme
cases for the interval uncertainties using the same methods mentioned in Approach 2. The interval analysis
would be done at some nominal values of the probabilistic uncertainties prior to superposing the probabilistic
uncertainty distributions. A schematic of Approach 4 is shown in Figure 16.

IV.B.5. Approach 5

The fifth approach removes the assumptions that there is no parameter interaction. Thus, no information is
known about any of the effects of the input parameters or their interactions with each other. Propagating
mixed probabilistic/interval uncertainties must be performed using a dual-loop analysis either with purely
Monte Carlo methods, an optimization, or a mixture depending on whether the desired outputs are pure
extreme case intervals or include information about the confidence.?*9* These methods all involve running
a sampling of the probabilistic parameters at a number of different combinations of the interval parameters
in order to capture interactions that impact the output. A schematic of Approach 5 is shown in Figure 17.
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Figure 17. Schematic of FDS example problem Approach 5.

IV.B.6. Approach 6

Surrogate model-based methods (aka response surface, meta model, emulation, machine learning) take a
smaller number of samples of a physics-based simulation or test data set and use those to build a predictive
model for use in analytics. As knowledge of the system decreases and fewer assumptions are made, more
sampling intensive approaches must be used to propagate the uncertainties. For the example outlined here,
the simulation may be computationally light enough to run these samples directly for some of the propagation
methods discussed but could still take days to run the dual-loop processes necessary for Approach 5. The
situation becomes worse as the cost of the individual simulations rises. A typical surrogate modeling process
requires five steps:

a) Build and run a sampling design of experiment or collect existing data from the simulation.

b) Fit a surrogate model to the simulation data.
¢) Check the accuracy of the surrogate model relative to the underlying simulation.
d)

If the model has achieved the desired level of accuracy, use for analysis, otherwise change model fitting,
model type, or add additional data using DOEs or adaptive sampling techniques.

e) Run the uncertainty propagation cases, optimizations, etc. on the surrogate model.

Additional details on model types, error metrics, and use cases are available in the literature.?> A schematic
of Approach 6 is shown in Figure 18.
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Figure 18. Schematic of FDS example problem Approach 6.

V. Conclusions

This paper was written to serve as a reference on uncertainty quantification for the AIAA Certification
by Analysis Community of Interest Recommended Practices Document; specifically, it is meant to aid in the
understanding of two of the CbA Col recommended tasks: (1) validation of models and (2) justification of
analysis adequacy in recognition of potential modeling error and/or uncertainty. An overview of uncertainty
quantifcation was given, which includes four major components: the identification of sources of uncertainty,
the characterization of their statistical form, the propagation and aggregation of uncertainty through models,
and finally the analysis of uncertain results. Two realistic engineering problems with results computed were
presented, followed by two hypothetical examples for more complex analyses. The outcome of these example
problems and UQ in general is the enablement of modelers and analysts to make informed statements about
the uncertainty and associated degree of credibility in analysis-based predictions.
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