This paper describes objective technical results and analysis. Any subjective views or opinions that might be expressed
in the paper do not necessarily represent the views of the U.S. Department of Energy or the United States Government.
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FEATURE COMPARISON OF ARCTIC OBSERVATIONS AND CLIMATE

MODELS
Problem Results Approach

* Since the advent of the satellite era we have observed declining sea ice in the Arctic across ¢ The random forest regression fit all datasets well, with R > 0.8 in all cases. * Coupled climate models are parameterized and given initial conditions when they start.
all seasons [3]. * Observational data output that sea ice extent is the most importance feature. Though the These may lead to some data and physical processes being weighed too heavily, and
 Rosenblum and colleagues found that of 118 CMIP5 models, only 11 were within a error bars for all importances are wide, observational sea ice extent’s error does not others too lightly.
standard deviation of observed sea ice extent trends. This amounts to an underestimate of overlap with any other features. * To improve climate models and our understanding of the Earth’s Arctic climate system, we
at least 150,000 km? per decade [2]. * Ensemble feature imporances are surprisingly inconsistent. want to characterize and explain the disagreement between model data and observed
* Data driven methods may be able to highlight areas where traditional models are biased. * Only ensembles 1 and 3 rank sea ice extent as the most important but ranked the other data. To do this we can train machine learning (ML) models on observed data and data
features differently. output from simulation models.
* Ensemble 5 is the most different. The error indicates that almost all features are as  Random forests fit multiple decision trees to subsets of data and uses averaging to
predictive as any others. improve the model’s predictability and accuracy. A random forest can minimize over-fitting

D ata | by limiting the trees’ depth.
Observed Sea Ice: Random Forest Regression e Decision trees output Gini importance for each feature as it is built. These can be averaged
Ensemble1 in the whole forest to find a good estimate of feature importance.
 Comparing feature importances between models trained on observed data and models
| trained on the E3SM ensembles, we can start getting an idea of what factors may be
j+ + differentiating the datasets. We make comparisons between ML models trained on both
- data sources using analysis of the models' feature importances.
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* Theyears 1979 to 2014 are considered because these are the years observational satellite
data and model data overlap.

e Datais preprocessed by taking minimums and means for each feature, over all grid cells in
the Arctic for a given month.

5 ensembles of data from the DOE’s Energy Exascale Earth Systems Model (E3SM) [1].

 Each ensemble is 35 years of results from separate E3SM runs of 165-year coupled global
simulations.

* Because the physical equations of the ocean and atmosphere are chaotic, small
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Global 1 degree * The climate modelers on our team found the E3SM feature importances surprising. They

resolution B sea ice extent B vwing 8 Ensembleb expected them to be at least similar between each other, even if they disagreed with the

Every 6 hotiis — uwier - B air temp g observational data’s feature importances.

— £ * If we find that different features are important to the different models, then we can

Ocean reanalysis — | clonElel lignene | SlEEE EELE * * [ improve climate models and make more accurate predictions, develop a better

Son SinEe Bl sea_surface_temp -+ understanding of the Arctic climate system, and be better prepared for future outcomes.

* QOur next steps are to apply this and similar methods to develop predictive data-driven
EEUPIE ENAIRE monthly models of Arctic sea ice extent. We hope this can further inform the tuning and

development of the E3SM model.
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