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Importance and Need

o With the growth of population and increasing globalization combined with
emergence of antibiotic resistance in pathogens the potential threat of global
pandemic is on the rise.

o Emerging new pathogens makes it difficult to detect an outbreak early on.

o Current state-of-the-art Biosurveillance strategies are disconnected, sparsely
applied, and confined to few agents

O No clear strategy for individual early warning health monitoring

o Globalization and United states’ interest in maintaining global peace, US
troops are deployed all over the world. These unfamiliar environments pose
exposure to new pathogens to US warfighters

o With the advancements of Data Science and Biological research , assays and
sensors we are now exposed to advanced tools relevant for effective early
prediction of an “event”

Emergence of new
pathogens




3

Data Science role in Health Informatics

oData science applications have made feasible to understand
complex biological processes

oBetter signal/noise, find patterns in large datasets and improving

accuracy, efficiency and early detection — R
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o Application of machine learning and Al has been aiding in (i
decision making process in medical diagnostics \ Heéeér@ .\pe'fié'ﬁ'oy
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o Advancement of precision and personalized medicine driving \LEQ% Sie/" — ——_\Diagrosis /

deposition of personalized genomics and metagenomics data

Data Science and machine learning is now an integral part to
understand, characterize and detect patterns in biological assays
including genomics/metagenomics, proteomics, cheminformatics,

imaging, etc.




WHATS NEEDED ?

Layered detection of anomalies in health dataset

Layer 1 : Individual assay Individual Health
Anomaly detection

Layer 2 : Individual Health Anomaly
detection

Layer 3 : Population Health Anomaly detection
(City-district level)

Layer 4 : Population Health Anomaly detection
(State-Nation level)



Availability of Human and Environmental Datasets
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Currently there the available datasets can be ’ -
characterized into two categories SEAS
D)
Self/Personalized Monitored or can be at
monitoring health care facility N
N
On a continuous time series for per visit bases S
various conditions ° Biochemistry tests for biomarkers ([
° Hearth rate o Genomics profiling
O " . : "
rygen content > Microbiome monitoring
° Breathing . o
o Movement . Proteom.ms @0@t0r1ng
> Blood pressure > Metabolic activity
o Glucose levels > VOCs
We have focused our attention to Data Science application B el Senar L Gl BieptehTI () St e
to Microbiome profiling for 15t layer ML application. t"gﬁ@g; ) Qardiofores (6)-Vital Jacket® tshirt; (7)Hloov (activity




6 | Data Science Application for Disease Prediction

Microbiome and Human
Microbiome: Humans 219 5888888 crobial cells (100 trillion cells).

Microbiome is helps us carry out major biological functions as digestion,
immune response

Humans are 50-60% microbial cells (100 trillion cells) . ,'Tf."'"%’bﬂ

Microbiome is helps us carry out major biological functions as digestion,
immune response, neural response. And dysbiosis of human microbiome
has been associated with variety of health disease and disorders

Early prediction of diseases in Humans with Data Science tools

We applied a custom machine learning pipeline iPredictome to Human Microbiome Project data

1638 Samples and 572 variables
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NIH Integrative H)g;nén Microbiome Project



1x=Yelleito)aal= The iPredictome Strategy

iPredictome is the machine learning toolkit to detect anomalies
in the Biological dataset to characterize the health state.
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But also has potential to work with
Proteomics, Metabolomics, VOCs, etc. and we are actively
working to include them in our feature set .



|dClellate)alsM Feature Engineering

|HMP 1638 Samples and 572 variables

NIH Integrative Hgman Microbiome Project 16s ssu Amplicon Sequencing & Metagenomic Sequencing Leanne
Whitmore
Extract taxonomic profiles (metagenomic Original data Shadow features
sequencing) and metadata from human 51 |S2 |S3 |s4 |
microbiome project i“in?gn 3 @ |2 |1
<7 Feature Reduction y— EENUENENRENN - N
Use feature reduction algorithms such as Boruta
and tSNE to initially evaluate important taxonomic Boruta : feature Selection
profiles . . .
with randomization
% -nmﬂnmﬁiﬂﬁl
Machine Learnin — . —
Test a number of classifiers to deter%\ine which R 0 0 +1 —
best predicts each diseased state
N Model Explainer - Feature importance

o o : LIME : Local Interpretable
Identify distinct taxonomic signatures using local . .
interpretable model agnostic explanations (LIME) Model-Agnostlc Explanatlons




dimension 2

L BEEGIEt el Feature Engineering

Feature engineering for patterns in
microbiome structure in disease

Taxonomic binary Taxonomic raw Diversity
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IPredictome

10

Classification Accuracies
Predictive Machine Learning Algorithm

Performance

Accuracy of iPredictome : > 96% accurate

Classifier

Kneighbors jaccard
Kneighbors euclidean
RandomForest
Multi-Layer Perceptron
AdaBoost

Raw full

0.96, (+/- 0.02)
0.83, (+/- 0.06)
0.86, (+/- 0.06)
0.5, (+/- 0.06)
0.71, (+/- 0.06)

Support Vector Machines 0.45, (+/- 0.06)

Binary full

0.96, (+/- 0.02)
0.94, (+/- 0.04)
0.89, (+/- 0.04)
0.89, (+/- 0.04)
0.7, (+/- 0.04)

0.67, (+/- 0.08)

Raw reduced (boruta)

0.95, (+/- 0.04)
0.82, (+/- 0.06)
0.88, (+/- 0.04)
0.53, (+/- 0.06)
0.71, (+/- 0.1)

0.44, (+/-0.1)

Binary reduced (boruta)

0.96, (+/- 0.04)
0.96, (+/- 0.04)
0.92, (+/- 0.04)
0.9, (+/- 0.06)
0.72, (+/- 0.08)

0.8, (+/- 0.06)
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LIME interpretation of ML Predictions
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Y iPredictome S Application

Software has the capability to be hosted in cloud for prediction to be deliver
through a web-app or mobile phone

An example output is displayed below.

< C  ® www.ipredictome.com/static/1001604318_FALSE.html Dig

Determine risk of Disease

Moderately High
high

Low Moderat: i

Microbiome Components

This sample had a MODERATE list of IBD
condition

Click on the button to select the patient from the options.

Look at Microbiome

EEEEEE -




What’s Next




Anomaly detection on the multiple data streams on Individual

We are attempting to apply
Sandia developed method of
unsupervised anomaly detection
method to call out anomalies in
weatrable data.

> Unsupervised Anomaly detection
° Based on Tensor Decomposition

o Ideal for multivariate dataset for
detection of spatial or temporal
variations

Konduri et al 2019 ]. Comput. Physics




Anomaly detection detects changes in vital signs with
flu like symptoms

15

Featurs 2

The algorithm decomposes the data into several spatial sub-domains and time steps

Featura 1

g -l LT Cr
| ] | |
e ']bm ‘+ LT 'JIHM ]}@’R
iy AR

Hellinger distance
(Measures change in orientation of
singular vectors weighted by singular values)

103 0040
Label
102 e 0 0035

101 L 0.030

100 4} 025

0020

@
o
o /\/Jw
0.000

Window index

Feature 2
-‘
ellinger Distance

@8 = '
o 0015
2 f”'iw--ﬂa-?‘
7 o "‘? "’4'3 T goio
. l“l-
- -‘I.v‘-;\‘q'.l= i &

&
®
(=]
=]
]
2]

Feature 1

Anomaly detected from health data




Future Focus : Integration at higher levels

Anomaly detection on the population level

Turning the Individual Layer anomaly as a
reading for the local population layer of
detection for population level anomaly

Timeline of surveillance

Third Layer
Localized population anomaly
detection

Anomaly in population health an
indication of local outbreak



Future Focus : Integration at higher levels

Anomaly detection on the Global level
Turning the local population anomaly as a Fourth Layer .
reading for the fourth layer of detection for Global population anomaly detection

Global level anomal
Y Timeline of surveillance
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Anomaly in population health
an indication of outbreak
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Application of similar Data
Science strategy for Crop
Protection




Application of similar Data Science strategy for Crop Protection

+ Annual Productivity
+ Cost : for sustainable use we need HIGHER annual productivity « Reduce number of crashes.

- Annual productivily Increase ways  Building Predictive Machine Learning Models for Crashes

+ Reducing biomass loss by avoiding crashes orid Batation B Good
Productivity
Agents: predators, parameters "\ MaChine._.Reliability
Algae + pathogensvirus& + Environment = CRASH | Learning K
fungi PR o o Genetic data Cost -
v ( ®) ((' o 7 D D
optimal features BAD

» Increase daily productivity
« Identify beneficial factors for productive growth
+ |dentify deleterious factors
+ Identify conditions and strategy for optimized production

! )AQ'?%K

+ Need of higher daily productivity

Build an algorithm for early detection of anomaly for each cultivation run

Strategy: Prediction Accuracy
. . 2 Crash
Egtofrlg? h g5 == Prediction Timeline for Early
(NGS) % 3 Potential =) Prediction
‘ g e Causative
Metadata PEELHFES Potential Causative
Agents




Application of similar Data Science strategy for Crop Protection

Pond

[ s [ eweow |~ s ] MAGPie Pipeline: A parallel processing

! amplicon sequencing analysis pipeline
Pre-process(ijng of Classification of Taxonomy for Ultra faSt analyS]S
raw reads Silva & G
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¥
Micrpbiome oTU l
. Il)ol ’— clustering Machine learning
= i % 5,_ USEARCH
= .l Classification accuracy
e " MAGPie lllumina
100% - Genus 65% - Genus . .
e Pl e Machine Learning strategy

Ensemble of methods
Machine Learning

Species Abund .
3 peCles " (z‘é\ Regression Dedsion forest Bayesi an Netwo k PrOdUCtiv'ty
P l
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Metadata - pond Algae Testbed < " Stability/Reliability
operati onal data Public-Private Partnership Run parsmeters I Pond crashes
(Harvest strategies Clustering Support Vector Machines N(-uravlvnms
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Ph, temperature,
salinity

) h . - . Best/optimal operational practices



Development of Predictive Modelling > Anomaly Detection Software
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2 | Summary

Here we show a framework of data science tools for analyzing
health care related datasets at multiple layers

> We showcase our capabilities on successtul application of machine
learning capabilities on complex biological datasets studying
microbiome and multiomics

° Introduce an anomaly detection methods to handle time resolved data
streams from multiple sources

And share our vision of how these tools can help in early detection of
an emerging biological treat
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