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Why multifidelity in Uncertainty
Quantification?



Intro

UNCERTAINTY QUANTIFICATION
DOE AND DOD DEPLOYMENT ACTIVITIES
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FIGURE: Courtesy of Mike Eldred

High-fidelity state-of-the-art modeling and simulations with HPC
» Severe simulations budget constraints
» Significant dimensionality driven by model complexity
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UNCERTAINTY QUANTIFICATION FOR HF SIMULATIONS
STATE-OF-THE-ART

Two technologies are emerging as effective strategies to perform UQ for HF simulations:

» Multifidelity optimally fuses a handful of HF realizations with large sets of realizations from several lower
fidelity models

» Reduced Order Modeling (ROM) creates a fast representation of the HF numerical model for a rapid a
posteriori use

In principle ROM can be used (as it is) within a MF UQ framework as one model fidelity, however few questions
need to be addressed:

» How accurate does ROM need to be to achieve a certain accuracy within the MF UQ?

» How is it possible to optimize the training step of ROM within a MF UQ workflow?

@ In this talk we try to explore how the coupling between ROM and MF UQ can be done efficiently
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Multifidelity Sampling-based approaches



Multifidelity Sampling

UNCERTAINTY QUANTIFICATION
FORWARD PROPAGATION - WHY SAMPLING METHODS?

UQ context at a glance:
» High-dimensionality, non-linearity and possibly non-smooth responses

» Rich physics and several discretization levels/models available

Natural candidate:

» Sampling-based (MC-like) approaches because they are non-intrusive, robust and
flexible...

» Drawback: Slow convergence O(N~1/2) — many realizations to build reliable
statistics

Goal of the talk: Reducing the computational cost of obtaining MC reliable statistics

Pivotal idea:

» Simplified (low-fidelity) models are inaccurate but cheap
» low-variance estimates

» High-fidelity models are costly, but accurate
» low-bias estimates
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Multifidelity Sampling

UNCERTAINTY QUANTIFICATION
RICH SET OF MODELING CHOICES - DISCRETIZATION VS FIDELITY

Multi-fidelity: several accuracy levels available

» Physical models (Laminar/Turbulent, Reacting/non-reacting, viscous/inviscid...)
» Numerical methods (high/low order, Euler/RANS/LES, etc...)
» Numerical discretization (fine/coarse mesh...)

» Quality of statistics (long/short time history for turbulent flow...)

Potential Flow

—_— Fousie Potential Flow E
ow
Regions
vortex sheet Reynolds “
o Averaged Navier- v stress RA!
e ) S
s
g
= Hybrid
=
5 [ —
2
Large Eddy
Simulation (LES)

Hybrid RANS/LES
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Multifidelity Sampling

MONTE CARLO SIMULATION
INTRODUCING THE SPATIAL DISCRETIZATION

Problem statement: We are interested in the statistics of a functional (linear or non-linear) @y of the solution uys

Qu =9(uy) — E[Qy]

» M is (related to) the number of spatial degrees of freedom

M— oo

> E[Qy] ——— E[Q] forsome RVQ : Q — R

1
Mc def ZQQ)

Looking at the Mean Square Error (MSE):

E (@ — Q)] = var [@%] + E(Qm — Q)
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Multifidelity Sampling

ACCELERATING MONTE CARLO
BRINGING MULTIPLE FIDELITY MODELS INTO THE PICTURE

Pivotal idea:

>

High-fidelity models are costly, but accurate

» low-bias estimates

Simplified (low-fidelity) models are inaccurate but cheap
» low-variance estimates
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Reduced Order Modeling (ROM)



Reduced Order Modeling | r

REDUCED ORDER MODELING
GENERALITIES

Vorticity Field Pressure Field

LSPG ROM
* 32 min, 2 cores

High-fidelity
* 5 hours, 48 cores

ROM are used at Sandia for
» Time critical decision: Model predictive control and health monitoring

» Many queries workflows: Optimization and Uncertainty Quantification

Model Reduction Criteria
» Accuracy: achieve less than 1% error
Low cost: achieve at least 100x computational saving

Property preservation: preserves important physical properties

>

>

» Generalization: should work in every difficult cases
» Certification: accurately quantify the ROM error
>

Extensibility: should work for many application codes
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Reduced Order Modeling

REDUCED ORDER MODELING
LEAST-SQUARES PETROV-GALERKIN (LSPG) - WORKFLOW

High-Fidelity system of ODEs:

d=flatp), o0 p) =a%(w)
1. Acquisition e st 3. Reduction
ﬁ\. s ] Choose ODE X bt
> »g g Temporal -

i 6" il g gg Discretization () =0, n=1..T
7 ; o x(t) ~ %(t) = ®X(t)
SOlvedgg: na; ;::serent Save solution data Reduce the I

number of
2. Learning unknowns

Unsupervised Learning with Principal
Component Analysis (PCA):

minivrnizeH A (o V)2

X = = u ; 3 v’ Minimize the

Residual

2

» LSPG references: [Carlberg, Bou-Mosleh, Farhat, 2011; Carlberg, Barone, Antil, 2017]
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MF UQ-ROM coupling

MULTIFIDELITY UQ AND ROM COUPLING
NORMALIZED COST WITH a priori ROM

» The variance reduction of the multifidelity scheme is
5 - r—1
Var [Q%F} = Var [Q] (1 - p%)
r

» Let's assume that ROM is the (only) LF model

» The c:ptimal1 number of HF and LF simulations can be obtained in closed form for an estimator variance e2
Var [Q] r*—1 4
N = 1—- —
2 r* P
o | Crom
Crom
» The overall cost of the multifidelity estimator (normalized w.r.t. MC) is

*—1 C
e = (1 - r7p2> (1 +r* —”0M> .
r* Crom
NOTES:

> The cost Cjgr™ represents the efficiency of the MF UQ estimator

> Given a fixed value for both Cpops and Cropy, then Cyfp™ = Cﬂ;,:m(pz)

IMinimum overall estimator cost for a target estimator variance
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MF UQ-ROM coupling

MULTIFIDELITY UQ AND ROM COUPLING
ONLINE ROM’S COST INTEGRATION

Can we be more efficient by designing the ROM to achieve an optimal correlation and cost trade-off
within this framework?

We consider here (without lack of generality) two hyper-parameters for ROM:
» np number of basis terms for ROM

» £ the multiplicative factor that controls the time step size (i.e. a time step kAt is used for ROM whereas At
is used for FOM)

A complexity analysis can be conducted for both FOM and ROM

» Full order model

FOM
C = MmNy VnnzN.

» ROM based on QR decomposition
n, 2
CROM.QR _ inn, (aunnanb = 20¢Nn?7 + aNny, + n% (75'1%))

» where

» n, is the number of time steps

» n,; is the number of iterations for the non-linear Newton-Raphson method

> n; is he number of iterations for the solution of the linear system

> Upnz is the number of non-zero elements per row (i.e. spatial discretization stencil)
» N is the number of spatial nodes

» « is the hyper-reduction factor
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Numeric:

TEST CASE DESCRIPTION
THE KURAMOTO-SIVASHINSKY EQUATION

We consider the non-dimensionalized one-dimensional KS equation with homogeneous Dirichlet and Neumann
boundary conditions,

ou + )Bu %u a*u
— =—(@u+e¢)— - — —v—7
ot ox 9x? dxt
x €[0,L],¢ € [0, 00),
u(0,t) = u(L,t) =0,
ou Ou
P - =0,
0x |x=0 Ox =L
u(x,0) = ug(x),

where L is the domain length (L = 128 in our tests), ¢ is an advection parameter, and v is the hyperviscosity
parameter.

FIGURE: Space-time plot of the KS equation solution for ¢ = 0.0, L = 128.0, v = 1.0.

Efficient MF UQ with integrated ROM 11/16



L ! Numerical results

TEST CASE DESCRIPTION
THE KURAMOTO-SIVASHINSKY EQUATION - QUANTITIES OF INTEREST

In this study we considered four different quantities:

» Mean of a pointwise quantity

Q' (u(x, 1) =

1
/ D u(x = 0.25L, t) dt,
t—to Jyy

»  Mean of a squared pointwise quantity

Q@ (u(x, ) =

t
/ V2 = 0.25L, 1) dt,
t —to Jrg

» Mean of a spatially averaged quantity

Q(u(x, 1) =

/tl]E[u] dt, Eul= % /Lu(x,t)dx,
JO

ty —to Jig
» Mean of a spatially averaged squared quantity

Q (u(x, b)) = ” ito /tl E[e’] @, E[] = % /OL w2 (x, t) dx,

to

— u(x=0251)
15.0 u"2(x=025L)
— Eu]

125 — Eu2)

100

Quantity of Interest

[ 200 400 600 800 1000
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Numerical results

MF UQ - ROM COUPLING

EXPLORING THE EXISTENCE OF AN OPTIMAL COUPLING REGION

On-line MF UQ — ROM coupling
> the hyper-parameters n; (number of basis terms) and k (the time step factor) control the cost Cpgy
» the correlation between FOM and ROM is also a function of nj and %
» the final MF UQ-ROM estimator’s cost (normalized w.r.t. MC) is then function of nj and &
*
argmin (1 L (nb,k)> (1 1 (ny by LE 0B ("”’k)> ,
ny .k r* (ny, k) 1

where

1 P2 (ny, k)

*
) = L.
R = | Gra T2 (ng )

Numerical tests procedure:

» The uncertainty parameters are randomly sampled and the inputs for Ny,.,;, training data points are
generated;

» FOM evaluations are generated for the training data;

» A POD basis & is computed from the aggregation of the snapshots from the Ny,,;, FOM evaluations;
» For an assigned value of the parameters 72;, and £, ROM evaluations are generated for the training data;
» The correlation and the L2 error between the FOM and ROM Qol evaluations is computed.

NOTE: the normalized L2 error is defined as follows

ow)

" (@)’

where the vector of realizations for the FOM and ROM are denoted as Qppps and Qgrppy. respectively.
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Numerical results

MF UQ - ROM COUPLING
REPRODUCTIVE VS PREDICTIVE TEST SCENARIOS (¢ ~ 14(0.1,0.5) AND v ~ U(1,2))

Dt coefficient
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Numerical results

MF UQ - ROM COUPLING
ESTIMATOR EFFICIENCY (¢ ~ 14(0.1,0.5) AND v ~ U/(1,2))

ROM (QR) - Cost and estimator efficiency for E [uz]

Normalized ROM cost -- QR (HH) MF-ROM efficiency -- QR -- E[u2] -- Predictive
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Conclusions

CONCLUSIONS
PRELIMINARY ENCOURAGING RESULTS, BUT MORE WORK IS NEEDED

Findings:
» A formal way of introducing ROMs within MF UQ has been developed

» In principle it is possible to tailor the ROM accuracy in order to maximize the estimator efficiency (compared
to a plain MC)

Challenges:
» Kuramoto-Sivashinsky is a chaotic problem which poses great challenges for all ROMs algorithms

» Integral Qols appear easier to represent. It is difficult to achieve a good overall estimator efficiency for
pointwise Qols.

» The non-linear relationships between the accuracy/cost for ROM as function of the hyper-parameters
hampers the ability to obtain a closed form solution for both the optimal ROM and estimator parameters

Future directions (work in progress):

» Explore simpler problems to improve understanding of the interplay between the deterministic accuracy and
the one obtained over the stochastic space by ROMs

» Explore the cost of a truly integrated approach based on a numerical optimization of the ROM
hyper-parameters
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Conclusions

THANIKS!

Sandia National Laboratories is a multimission laboratory managed and
operated by National Technology and Engineering Solutions of Sandia,
LLC., a wholly owned subsidiary of Honeywell International, Inc., for
the U.S. Department of Energys National Nuclear Security Administration
under contract DE-NA-0003525.

Efficient MF UQ with integrated ROM 16/16



Supplemental Materials



MULTIFIDELITY
FOCUSING ON THE SINGLE LOW-FIDELITY CASE

The goal of any multifidelity sampling strategy is to reduce the Monte Carlo variance

>

» In a control variate approach, this is done by introducing (correlated) low-fidelity models

» Each low-fidelity model introduces an unbiased term to be added to the original (HF only) MC estimator
>

We need two different estimates of the low-fidelity mean (Q; and fi;)

Q§V=Q+[3(Q1—ﬂ1)~
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MULTIFIDELITY
FOCUSING ON THE SINGLE LOW-FIDELITY CASE

>
>
>
>

The goal of any multifidelity sampling strategy is to reduce the Monte Carlo variance
In a control variate approach, this is done by introducing (correlated) low-fidelity models
Each low-fidelity model introduces an unbiased term to be added to the original (HF only) MC estimator

We need two different estimates of the low-fidelity mean (Q; and fi;)

Q§V=Q+[3(Q1—ﬂ1)~

In practical situations

>
>

>

the term QI is computed with the same set of samples available for the HF model

the term fi1 is unknown (low fidelity # analytic function)

we use an additional and independent set ALF — (r — l)NHF

Finally the variance is

[1]

[2]

[31

Var [Q]C\}V} = Var [Q] (1 = r; g p%)

Pasupathy, R., Taaffe, M., Schmeiser, B. W. & Wang, W., Control-variate estimation using estimated
control means. /IE Transactions, 44(5), 381-385, 2012

Ng, LW.T. & Willcox, K. Multifidelity Approaches for Optimization Under Uncertainty. Int. J. Numer.
Meth. Engng 100, no. 10, pp. 746772, 2014.

Peherstorfer, B., Willcox, K. & Gunzburger, M., Optimal Model Management for Multifidelity Monte Carlo
Estimation. SIAM J. Sci. Comput. 38(5), A3163A3194, 2016.

Efficient MF UQ with integrated ROM 16/16



REDUCED ORDER MODELING
GENERALITIES

» The HF model is considered the Full Order Model from the ROM perspective
» After the semi-discretization in space a parametrized set of ODEs is obtained
i=ftn),  ®(0p) =2"(u),
where xo(y.) denotes the parameterized initial condition.
A time-discretization method is required for the numerical solution, e.g. a linear k-steps method
@ p) =0, n=1,...,Ny,
where the time-discrete residual " : RY x D — RN is defined as
k . k . X
(& v) o agf — AtBf (€, ) + Do — AtY Bif (T b)),
Jj=1 j=1

Here, At € R denotes the time step, % denotes the numerical approximation to x(kAt; pt), and the

coefficients a; and ﬂ]j =0,...,k with Z?:D a;j =0 define a particular linear multistep scheme.
@ In this talk we focus on Least-Square Petrov-Galerkin
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REDUCED ORDER MODELING
LEAST-SQUARES PETROV-GALERKIN (LSPG)

» Projection-based ROM compute an approximation ¥ &~ x that lies in a low-dimensional affine trial subspace
%(t;p) € 2%(p) + Ran(®@), ie.,
#(t; p) = 2% (p) + @&(4; p),
where & € RN XP s the reduced-basis matrix of dimension p < N (@T@ =1I)
> % :[0,7] x D — RP denotes the generalized coordinates
Ran(A) denotes the range of a matrix A

LSPG substitute the approximation £ <— & into the FOM ODE, and subsequently minimizes the ODE
residual in a weighted iz-norm, ie.,

#" = argmin|Ar® (2% (1) + ®2; ) 2.
ZERP

» To ensure an N-independent operation count a sparse weighting matrix should be selected
A= (P,®,)"P, and
A=P,

in the case of gappy POD and collocation, respectively.
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