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UNCERTAINTY QUANTIFICATION
DOE AND DOD DEPLOYMENT ACTIVITIES
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High-fidelity state-of-the-art modeling and simulations with HPC

0. Severe simulations budget constraints
► Significant dimensionality driven by model complexity
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UNCERTAINTY QUANTIFICATION FOR HF SIMULATIONS
STATE-OF-THE-ART

Two technologies are emerging as effective strategies to perform UQ for HF simulations:

► Multifidelity optimally fuses a handful of HF realizations with large sets of realizations from several lower
fidelity models

10. Reduced Order Modeling (ROM) creates a fast representation of the HF numerical model for a rapid a
posteriori use

In principle ROM can be used (as it is) within a MF UQ framework as one model fidelity, however few questions
need to be addressed:

► How accurate does ROM need to be to achieve a certain accuracy within the MF UQ?

► How is it possible to optimize the training step of ROM within a MF UQ workflow?

(), In this talk we try to explore how the coupling between ROM and MF UQ can be done efficiently
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UNCERTAINTY QUANTIFICATION
FORWARD PROPAGATION - WHY SAMPLING METHODS?

UQ context at a glance:

0- High-dimensionality, non-linearity and possibly non-smooth responses

0- Rich physics and several discretization levels/models available

Natural candidate:

0- Sampling-based (MC-like) approaches because they are non-intrusive, robust and
flexible...

► Drawback: Slow convergence 0(N-112) —> many realizations to build reliable
statistics

Goal of the talk: Reducing the computational cost of obtaining MC reliable statistics

Pivotal idea:

0- Simplified (low-fidelity) models are inaccurate but cheap
10.- low-variance estimates

0- High-fidelity models are costly, but accurate
► low-bias estimates
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UNCERTAINTY QUANTIFICATION
RICH SET OF MODELING CHOICES - DISCRETIZATION VS FIDELITY

Multi-fidelity: several accuracy levels available

O Physical models (Laminar/Turbulent, Reacting/non-reacting, viscous/inviscid...)

O Numerical methods (high/low order, Euler/RANS/LES, etc...)

O Numerical discretization (fine/coarse mesh...)

O Quality of statistics (long/short time history for turbulent flow...)

Potential Flow

Potential Flow IMI

Reynolds
A veraged Naylor-
Stokes (RANS)

Hybrid
RANS/LES

Dela bed
dd.

HrDritl

Large Eddy
Simulation (LES)
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MONTE CARLO SIMULATION
INTRODUCING THE SPATIAL DISCRETIZATION

Problem statement: We are interested in the statistics of a functional (linear or non-linear) QM of the solution um

Qm = g(um) E [QM]

► M is (related to) the number of spatial degrees of freedom

► E [Qm] E [Q] for some RV Q —>

N
def 1 

N M 

(p)

Looking at the Mean Square Error (MSE):

E [(0121(rm — E [Q])2] = Var [Qirs] (IE [Qm — QD2
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ACCELERATING MONTE CARLO
BRINGING MULTIPLE FIDELITY MODELS INTO THE PICTURE
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Pivotal idea:

• High-fidelity models are costly, but accurate
Ir. low-bias estimates

I" Simplified (low-fidelity) models are inaccurate but cheap
► low-variance estimates
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REDUCED ORDER MODELING
GENERALITIES

LSPG ROM
• 32 min, 2 cores

High-fidelity
• 5 hours, 48 core,

ROM are used at Sandia for

I. Time critical decision: Model predictive control and health monitoring

► Many queries workflows: Optimization and Uncertainty Quantification

Model Reduction Criteria

11.• Accuracy: achieve less than 1% error

s• Low cost: achieve at least 1130x computational saving

► Property preservation: preserves important physical properties

► Generalization: should work in every difficult cases

IP• Certification: accurately quantify the ROM error

► Extensibility: should work for many application codes

Pressure Field

•
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REDUCED ORDER MODELING
LEAST-SQUARES PETROV-GALERKIN (LSPG) - WORKFLOW

High-Fidelity system of ODEs:

= f (x, t; µ), x(0; 14) = (ix)

1. Acquisition

Solve ODE at different
design points

Number of
time steps
4—*

Save solution data

2. Learning
Unsupervised Learning with Principal

Component Analysis (PCA):

X= F

3. Reduction
dx 
= f(x; r ix)Choose ODE

dt "
Temporal —IV
Discretization r"(x"; p,) = 0, n = 1 , ... , T

x(t)
Reduce the
number of

unknowns

x, z(r)

1 1 

= 0 i(t)

I

minimize A r"( (1) Y; 412

VMinimize the
Residual

1 iii  1 il

2

► LSPG references: [Carlberg, Bou-Mosleh, Farhat, 2011; Carlberg, Barone, Antil, 2017]
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MULTIFIDELITY UQ AND ROM COUPLING
NORMALIZED COST WITH a priori ROM

► The variance reduction of the multifidelity scheme is

Var [0r] = Var [0] (1 — 
r 

pl)

P. Let's assume that ROM is the (only) LF model

P. The optimal1 number of HF and LF simulations can be obtained in closed form for an estimator variance E. 2

Var [0] (i r° — 1 2)
=

E2 r° P
N 

= \
CFOM 

CROM

► The overall cost of the multifidelity estimator (normalized w.r.t. MC) is

Cro = (1 r*r* 1p2) (1 r. CROM

CFaif

NOTES:

IP. The cost CZ' represents the efficiency of the MF UQ estimator

► Given a fixed value for both CFOM and CROA f , then Clr = cr,p(p2)

1Minimum overall estimator cost for a target estimator variance

Efficient MF UQ with integrated ROM 9/16



Multifidelity Sarnpling Reduced Order Modeling MF UQ-ROM coupling Numerical results Conclusions Backup

MULTIFIDELITY UQ AND ROM COUPLING
ONLINE ROWS COST INTEGRATION

Can vve be more efficient by designing the ROM to achieve an optimal correlation and cost trade-off
within this framework?

We consider here (without lack of generality) two hyper-parameters for ROM:

► rtb number of basis terms for ROM

► k the multiplicative factor that controls the time step size (i.e. a time step kAt is used for ROM whereas At
is used for FOM)

A complexity analysis can be conducted for both FOM and ROM

10. Full order model
CFOM

II' ROM based on QR decomposition

cROMSM =
k ni 

(ct, Nn 2aNng aNnb 
3

(_ _4))

► where

► nt is the number of time steps
► nol is the number of iterations for the non-linear Newton-Raphson method
► ni is he number of iterations for the solution of the linear system
► v„„z is the number of non-zero elements per row (i.e. spatial discretization stencil)
► N is the number of spatial nodes
P. a is the hyper-reduction factor

Efficient MF UQ with integrated ROM 10/16
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TEST CASE DESCRIPTION
THE KURAMOTO-SIVASHINSHY EQUATION

We consider the non-dimensionalized one-dimensional KS equation with homogeneous Dirichlet and Neumann
boundary conditions,

8u a. 82u 84u— = -(u +0— - — -
at ax ax2 ax4

E [O,L], t E [O,00),
u(0,t) = u(L,t) = 0,

—
Ou 

= —
Ou 

= 0,
ax o-0 ax

u(x, 0) = up (z),
where L is the domain length (L = 128 in our tests), c is an advection parameter, and v is the hyperviscosity
parameter.

120

100

BO

200

FIGURE: Space-time plot of the KS equation solution for c = 0.0,L = 128.0, v = 1.0.
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TEST CASE DESCRIPTION
THE KURAMOTO-SIVASHINSKY EQUATION - QUANTITIES OF INTEREST

In this study we considered four different quantities:

► Mean of a pointwise quantity

Q1(u(x, t)) = 1 ft1 u(x = 0.25L, t) dt,
tl — to to

► Mean of a squared pointwise quantity

tl 

i
Q2 (u(x, t)) = 

1 ll 
u2 = 0.25L, t)dt,

— to to

10. Mean of a spatially averaged quantity

Q3 (14x, t)) =   E [u] dt, E [it] = L1 foL u(x, t) dx,
1 — to to

► Mean of a spatially averaged squared quantity

Q4(u(x,t)) = tl 1 tl E [u2] dt,
— to 

E[u2] 
✓

= foL u2 (x, t)dx,
to 

0.0
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MF UQ - ROM COUPLING
EXPLORING THE EXISTENCE OF AN OPTIMAL COUPLING REGION

On-line MF UQ — ROM coupling

11. the hyper-parameters nb (number of basis terms) and k (the time step factor) control the cost gigiTi

I. the correlation between FOM and ROM is also a function of nb and k

IP' the final MF UQ-ROM estimator's cost (normalized w.r.t. MC) is then function of nb and k

gm 
, —

arin (1 
r*  

P2 (nb,k)) (1+ r* (nb,k) 
CiF (nb,k))

b A

r(nkk)

* (nb,k 

1 

) 1n

where

r* (nb, k) —
1 p2(nb,k)

qr 1 — p2 (nb,k)'

Numerical tests procedure:

► The uncertainty parameters are randomly sampled and the inputs for Ntr„,n training data points are
generated;

► FOM evaluations are generated for the training data;
► A POD basis 4, is computed from the aggregation of the snapshots from the Ntr„i„, FOM evaluations;

► For an assigned value of the parameters 741, and k, ROM evaluations are generated for the training data;

10. The correlation and the L2 error between the FOM and ROM Qol evaluations is computed.

NOTE: the normalized L2 error is defined as follows

1/E QL/)2
11%0M- 14/tow/II= i  

\11%1,, i,, Am),

where the vector of realizations for the FOM and ROM are denoted as QFOM and QROM, respectively.
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MF UQ - ROM COUPLING
REPRODUCTIVE VS PREDICTIVE TEST SCENARIOS (C U(0.1, 0.5) AND U(1, 2))
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MF UQ - ROM COUPLING
ESTIMATOR EFFICIENCY (C 14(0.1, 0.5) AND v U(1, 2))
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CONCLUSIONS
PRELIMINARY ENCOURAGING RESULTS, BUT MORE WORK IS NEEDED

Findings:

► A formal way of introducing ROMs within MF UQ has been developed

► In principle it is possible to tailor the ROM accuracy in order to maximize the estimator efficiency (compared
to a plain MC)

Challenges:

► Kuramoto-Sivashinsky is a chaotic problem which poses great challenges for all ROMs algorithms

► Integral Qols appear easier to represent. It is difficult to achieve a good overall estimator efficiency for
pointwise Qols.

► The non-linear relationships between the accuracy/cost for ROM as function of the hyper-parameters
hampers the ability to obtain a closed form solution for both the optimal ROM and estimator parameters

Future directions (work in progress):

► Explore simpler problems to improve understanding of the interplay between the deterministic accuracy and
the one obtained over the stochastic space by ROMs

lo• Explore the cost of a truly integrated approach based on a numerical optimization of the ROM
hyper-parameters

Efficient MF UQ with integrated ROM 16/16



Multifidelity Sampling Reduced Order Modeling MF UQ-ROM coupling Numerical results Conclusions Backup

THANKS!

Sandia National Laboratories is a multimission laboratory managed and

operated by National Technology and Engineering Solutions of Sandia,

LLC., a wholly owned subsidiary of Honeywell International, Inc., for

the U.S. Department of Energys National Nuclear Security Administration

under contract DE-NA-0003525.
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MULTIFIDELITY
FOCUSING ON THE SINGLE LOW-FIDELITY CASE

► The goal of any multifidelity sampling strategy is to reduce the Monte Carlo variance
► In a control variate approach, this is done by introducing (correlated) low-fidelity models

► Each low-fidelity model introduces an unbiased term to be added to the original (HF only) MC estimator

► We need two different estimates of the low-fidelity mean (01 and Ai)

0,1,1 = 0 + (01 - Ai) .

Efficient MF UQ with integrated ROM 16/16
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MULTIFIDELITY
FOCUSING ON THE SINGLE LOW-FIDELITY CASE

► The goal of any multifidelity sampling strategy is to reduce the Monte Carlo variance
► In a control variate approach, this is done by introducing (correlated) low-fidelity models

IP. Each low-fidelity model introduces an unbiased term to be added to the original (HF only) MC estimator

► We need two different estimates of the low-fidelity mean (01 and rai)

0,1,1 = 0 + (01 - .

In practical situations

► the term 01 is computed with the same set of samples available for the HF model

► the term r.ri is unknown (low fidelity 0 analytic function)

► we use an additional and independent set ALF = (r — 1)NHF

Finally the variance is

Var [07] = Var [0] (1 
r  
r 
1 2)

[1] Pasupathy, R., Taaffe, M., Schmeiser, B. W. & Wang, W , Control-variate estimation using estimated
control means. IIE Transactions, 44(5), 381-385, 2012

[2] Ng, L.W.T. & Willcox, K. Multifidelity Approaches for Optimization Under Uncertainty. Int. J. Numer.
Meth. Engng 100, no. 10, pp. 746772, 2014.

[3] Peherstorfer, B., Willcox, K. & Gunzburger, M., Optimal Model Management for Multifidelity Monte Carlo
Estimation. SIAM J. Sci. Comput. 38(5), A3163A3194, 2016.
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REDUCED ORDER MODELING
GENERALITIES

► The HF model is considered the Full Order Model from the ROM perspective

► After the semi-discretization in space a parametrized set of ODEs is obtained

= f (x, t; p,), x(0; µ) = (µ),

where x°(//,) denotes the parameterized initial condition.

II' A time-discretization method is required for the numerical solution, e.g. a linear k-steps method

rn (x5; p.) = 0, n = I, ,Nt,

where the time-discrete residual rn RN x D RN is defined as

k k

rn : (; o) — AtOof(, tn ; V) ± aix-- _ At E t--;
j=1 j=1

Here, At E R+ denotes the time step, xn denotes the numerical approximation to x(k6,t; pc), and the

coefficients a j and )3j, j = 0, , k with 0 a j = 0 define a particular linear multistep scheme.

tIn this talk we focus on Least-Square Petrov-Galerkin
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REDUCED ORDER MODELING
LEAST-SQUARES PETROV-GALERKIN (LSPG)

R Projection-based ROM compute an approximation X x that lies in a low-d mensional aff ne trial subspace

X(t; E x°(1,1) Ran( ilx), i.e.,

1(t; µ) = (µ) 4,1(t;

where 4> E RN" is the reduced-basis matrix of dimension p < N (<1,T = I)

► 1 : [0, T] x D IRP denotes the generalized coordinates

► Ran(A) denotes the range of a matrix A

► LSPG substitute the approximation x t— X into the FOM ODE, and subsequently minimizes the ODE
residual in a weighted 0-norm, i.e.,

zn = arg min 11AR' (x°(P) 11)112•
iERP

R To ensure an N-independent operation count a sparse weighting matrix should be selected

A = (Pr<1.,)+ Pr and

A = Pr

in the case of gappy POD and collocation, respectively.
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