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Abstract— This paper evaluates the performance of a novel
nano-composite core inductor. In this digest, a brief explanation
of the superparamagnetic magnetite nanoparticle core is given
along with magnetic characterization results and simulated design
parameters and dimensions. A nearly flat relative permeability
() of around 5 is measured for the magnetic material to 1 MHz.
A synchronous buck converter with nano-composite inductor was
constructed and evaluated; the converter demonstrates a 1%
improvement in conversion efficiency at higher currents (10%
reduction in electrical losses), compared to an identical circuit
with benchmark commercial ferrite inductor.
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I. INTRODUCTION

Point-of-load (PoL) converters are an essential component
in many electrical systems having distributed components and
subsystems. Given the scale of modern data centers, often using
power at megawatt (MW) scales and employing expensive
thermal management systems, designers are motivated to reduce
electrical losses associated with power conversion. Of note is the
final conversion stage (converts power from voltages of 12-48
V down to voltages of 1.8-3.3 V for microprocessor loads),
which is often the least efficient stage [1, 2].

While the adoption of wide bandgap (WBG)
semiconductors, such as gallium nitride (GaN), can reduce
electrical losses attributed to the semiconductor, “--+ switching
frequencies are limited to =~1 MHz due to the losses in the
magnetic components” [3]. To reduce these losses at the MHz-
scale switching frequencies, researchers have considered
elaborate inductor designs [4], but the performance remains
limited by the magnetic material properties. High-Efficiency
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GaN-based converters have been demonstrated at frequencies
above 20 MHz using air core inductors [5].

Recently, a new magnetic material was developed based on
nanocomposite technology [2]. This construction virtually
eliminates the hysteretic and eddy current losses that accompany
high frequency operation. In this paper, the new magnetic
material is characterized to 1 MHz and a nano-composite
inductor is demonstrated in a simple GaN-based PoL buck
converter, with 2 MHz switching frequency, to be higher
efficiency than a comparable circuit using a commercial ferrite
inductor.

II. SUPERPARAMAGNETIC MAGNETITE
NANOPARTICLE COMPOSITE CORE

To achieve the required inductor performance a new
generation of materials with high magnetic saturation and
permeability  are  needed and  superparamagnetic
nanocomposites are an ideal candidate. The ferromagnetic
material is formed as 10-20 nm spheres and suspended in an
epoxy. Superparamagnets are characterized by an absence of
magnetic hysteresis, which makes them especially suitable for
high switching frequency applications (Fig. 1). The size of the
particle required for superparamagnetism to emerge is also
relatively small, which eliminates the contribution from eddy
current loss, as the nanoparticles themselves are too small to
support eddy currents. Magnetite (Fe;O4) is low-cost, non-toxic
and possesses the highest room temperature Mg, of any metal
oxide (92 A-m%*kg @ 293 K). For any material, control over the
size and shape are essential to produce an effective
superparamagnetic nanocomposite. For example, a finite size
distribution leads to a distribution in relaxation times, which can
adversely affect performance in high frequency switching
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applications [6]. We have developed the synthesis of
superparamagnetic magnetite (Fe;Os) nanoparticles with an
extremely narrow size distribution and incorporated them as the
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magnetic component in a strongly magnetic nanocomposite [7].

Fig. 1. Hysteresis loop of a toroidal nano-composite core collected at 1 MHz.

III. NANO-COMPOSITE CORE MAGNETIC
CHARACTERIZATION

To evaluate the AC magnetic properties of our nano-
composite core material, toroidal cores with an O.D. of 9 mm,
I.D. of 6 mm, and a height of 3 mm were fabricated. A SY-8218
B-H analyzer from Iwatsu was used to characterize the
nanocomposite toroids up to a frequency of 1 MHz. The
nanocomposite material maintains a nearly flat relative
permeability () out to 1 MHz, as can be seen in Fig. 2.
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Fig. 2. Real and imaginary permeability of a toroidal nano-composite core
versus frequency.

IV. INDUCTOR DESIGN AND SIMULATION

A solenoid-type coil architecture, conducive for manual
winding using conventional magnet wire, was chosen for initial
prototyping. The inductor employs a bobbin style magnetic core
enclosure using our magnetite nanocomposite. To first order, the

inductance of a finite solenoid with a magnetic core is governed
by the following:

L=u,uoN’A/l (1)

where u, is the relative permeability of the core material, uy is
the vacuum permeability, N is the number of wire turns, 4 is the
coil cross section, and [ is the coil length. While (1) provides a
good, first approximation under DC conditions, this equation
does not capture effects due to more complex geometry,
nonlinear core materials, and other effects attributed to high
frequency AC currents. To improve design accuracy, COMSOL
Multiphysics 5.3 commercial finite element software was used.

The inductor is an assembly of three parts: the multi-layer
solenoid coil, a nano-composite spindle and base, and a nano-
composite cap. The two nano-composite parts are molded and
cured as separate pieces. This forms the complete magnetic core
enclosure and completes the inductor fabrication process. Figs.
3a & 3b show a 3-D SOLIDWORKS rendering of the two nano-
composite parts while Fig. 3¢ is a cross sectional image of how
the two parts are mated with the solenoid coil.

a)

Fig. 3. a) Nano-composite cap. b) Nano-composite spindle & base with
notches designed for wire terminals and filling. ¢) Cross sectional image of the
assembled inductor with a 4-layer, 31 total turns solenoidal coil.

The bobbin core offers the advantages of higher power
density via the higher magnetic flux nanocomposite, a multi-
layer coil for increasing N without significantly increasing 1 and
only a minor increase in the inductor diameter, d, and a
completely enclosed flux path for reduced electromagnetic
interference (EMI) and power loss through environmental
coupling. This flux enclosure is illustrated by the 2-D cross
sectional image of the magnetic core polarization, J, shown in
Fig. 4. COMSOL was also used to determine that a 4-layer, 31
total turns solenoidal inductor using 24 AWG copper magnet
wire would meet the required inductance in the smallest form
factor.
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Fig. 4. Cross sectional image of the inductor magnetic core polarization, J,
generated by COMSOL.
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V. INDUCTOR ELECTRICAL PERFORMANCE
TESTING

Fig.5. 3.3 V synchronous buck converter used for testing the inductor
performance.

To test the performance of the nano-composite inductor in
circuit, a 3.3 V synchronous buck converter was developed with
a small form factor using EPC 2012C GaN HEMTs controlled
with an LTC7800 step-down controller. The LTC7800
switching frequency was set to 2MHz and put into continuous
inductor current mode (i.e. no burst or pulse skipping). Fig. 4
shows both SMPSs on a carrier test board. The efficiency of the
buck converter was tested with both the nano-composite
inductor and a commercial off-the-shelf (COTs) inductor
(ASPI-4030S-3R3). The key parameters of the inductors are
compared in the Table 1 below.

TABLE 1. EXPERIMENTAL RESULTS COMPARING BOTH INDUCTORS.
Moasured Pavamivtor Nano-Composite COTS Inductor
Inductor (measured)

Inductance @ 1 kHz (uH) 4.38 3.40

Inductance @ 2 MHz (uH) 3.37 3.22
DC Resistance (mQ) 56 49

AC Resistance @ 2 MHz (QQ) 241 1.11
Volume (mm3) 810 48

Fig. 5 below compares the efficiency of the circuits across
three input voltages and a range of output currents populated by
the nano-composite inductor or the COTS inductor. The output
voltage was set to 3.3 V by the LTC7800 controller. With
respect to conversion efficiency, the circuits are comparable to
about 0.9 A of load current. At this point, the circuit with the
nano-composite inductor shows a comparatively better
performance than the circuit with COTS inductor, with an
approximately 10 % lower electrical loss at load currents above
1.8 A, resulting in approximately 1 % higher conversion
efficiency at these higher load currents. This is consistent with
the high saturation flux density, low eddy current loss, and low
hysteresis loss of the superparamagnetic nanocomposite.
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Fig. 6. Circuit efficiency comparison between the nano-composite inductor
and the COTS inductor with approx. 1 % lower loss at higher currents.

VI. FUTURE WORK

One of the issues encountered with our buck converter
measurement was the degree of switching loss in the converter
itself. To gain a better understanding of the impact this new
nano-composite material may have on the performance of next
generation inductors, a direct core loss measurement at
frequencies of 10 MHz and beyond will be needed. One
promising technique, developed by researchers at Virginia Tech
[8], describes a method by which an additional transformer with
a lossless (i.e., air) or low-loss magnetic core in the test circuit
can be used to cancel the reactive voltage of the inductor. This
has the effect of reducing the measurement sensitivity to phase
discrepancy which can introduce errors of up to 100% or more
if not properly accounted for. It also has the advantages of being
wide-band, can be used for arbitrary waveforms, and is
relatively easy and inexpensive to implement.

VII. CONCLUSIONS

A novel nano-composite core inductor was designed to
improve the efficiency of Point-of-load (PoL) converters to
reduce electrical losses in modern data centers. This nano-
composite consists of 10-20 nm magnetite (Fe3O4) spheres and
suspended in an epoxy. The superparamagnetic nature of this
core material virtually eliminates the hysteretic and eddy current
losses that accompany high frequency operation. B-H analyzer
measurements of the nanocomposite core were made verifying
both it’s superparamagnetic behavior and a nearly flat relative
permeability () of around 5 out to 1 MHz. Finite element
modeling using COMSOL Multiphysics 5.3 was used to design
an inductor made from this nano-composite material. A
comparison between this nano-composite inductor vs. a COTS
inductor (ASPI-4030S-3R3) in a 3.3 V synchronous buck
converter test circuit shows a 1 % improved efficiency at higher
load currents.
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