This paper describes objective technical results and analysis. Any subjective views or opinions that might be expressed
in the paper do not necessarily represent the views of the U.S. Department of Energy or the United States Government

SAND2019- 14399C

Pairing 316L AM Powder Feedstock with
Mechanical Performance: What Really Matters

Michael Heiden, Bradley Jared, Ray Puckett, David Saiz

 — — Qiswmv

Sandia National Laboratories is a multimission
laboratory managed and operated by National
Technology & Engineering Solutions of Sandia,
LLC, a wholly owned subsidiary of Honeywell
International Inc., for the U.S. Department of
Energy’s National Nuclear Security
1 Administration under contract DE-NA0003525.




2 | Outline

* Laser-powder interactions for 316L in L-PBF
* Powder Characteristics — Boiling Down What Matters

* Coupling Powder’s Influence on Part Mechanical Properties
* Powder Reuse Effects on 316L Parts for Varying Lots

¢ Comparing Different Initial Powders

* Takeaways for Designing an AM Powder Specification




| Laser-powder interactions for 316L in L-PBF
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) | 316L Powder Characteristics — What Matters!?
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: | 316L Powder Characteristics — What Matters!?
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| Important Powder Characteristics to Track |
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Internal porosity created from atomization process ' 316L “bulk” chemistry changes depending on severity of machine parameters and build volume I

Maolten metal Wit %

Fe Cr Ni Mo Si Mn Cu P Co C S O N
(Stdev)
Virein 67.8 1684 10.81 2.05 0.65 1.20 0.21 0.015 0.098 0.011 0.014 0.067 0.086
S g 0.3)  (0.34) (0.22) (0.20) (0.10) (0.12) (0.03) (0.002) (0.015) (0.002) (0.002) (0.010) (0.013)
. Cotection Reused  67.6 1691 1090 2.02 0.60 127 022 0016 0.11 001§ 0.014 5 0.090
(30 cycles) (0.3) (0.34) (0.22) (0.20) (0.09) (0.13) (0.03) (0.002) (0.016) (0.002) (0.002) (0.014) (0.013)
Metal powders
- ASTM 61-60 16-18 10-14 23 1 2 i 0.045 i 0.03 0.03 i i
Spec [2] max max max max max
Porosity in
gas atomized .
powder L-PBF reuse coarsens particles 3 DED (LENS) reuse reduces coarse particles
particles 2 4000 DRSS S DA M A R =S58 pEa s A 1400
ok [ virgin ] — Virgin
g : : : : § | === Reused e == Reused
3000 Wi R B I P R e : - -
Baam r : : : : : : : : 1000
2500 T ..... ........ ......... ......... ........ ......... ......... ....... ]
Wy Spatte; ’ 2000 oo N ......... ......... ........ ......... ......... ....... ] g 0
iEvaporation 3 Gas pores in : : : ; : : ' -
Oxide layer atomized powders 1500 Ao
o Jb o N ||
500 - ................................................................... . 200
0 0 J
50 B0 70 80 90 O IS aRANRRRRATARGYISSRATARBOTORRNARRNGRIREGEIARS
Internal gas porosity can create defects 2 D, ave (um) Dl
[1] Hebert, R. J. (2016). "Viewpoint: metallurgical aspects of powder bed metal additive manufacturing." Journal of Materials Science 51(3): 1165-1175. [3] Heiden, M. J., et al. (2019). "Evolution of 316L stainless steel feedstock due to laser
[2] LE. Anderson, E.M.H. White, R. Dehoff, Feedstock powder processing research needs for additive manufacturing development, Current Opinion in Solid State and Materials Science 22(1) (2018) 8-15. powder bed fusion process." Additive Manufacturing 25: 84-103.



| Important Powder Characteristics to Track
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[1] Granutools. Flowability, bulk density and electrical charges - Additive manufacturing powders characterization. GranuTools Application Note. GranuTools.com (2017)
[2] Mercury Scientific Inc. AM Powder Testing. Flowability Application Bulletin 7.

[3] Spierings, A. B. Powder flowability characterization methodology for powder bed based metal additive manufacturing. Prog Addit Manuf. 1:9-20 (2016)

[4] Rollet, Tony, Carnegie Mellon University, Next Manufacturing Seminar
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Coupling

° "Powder &
Mechanical
Properties

High Throughput Charpy Test Coupon
Tensile Sample

* Two witness coupons built on every build plate tracked since 10/03/18

* Powder lot sampled after sieving

* Machine parameters set at: » 2 different types of 3161 powder
» Power: 110 W » 200 powder
» Mark Speed: 1400 mm/'s > 320 Powder

» Hatch Spacing: 50 pm
» Focus offset: 1.5 mm

» Style: Hexagon

» Layer Thickness: 30 um

1. Do part properties change with extensive powder reuse?
2. Which powder characteristics actually influence part properties?

Powder Sample

Properties tracked for each build:

* Powder Morphology
> Average Diameter
» Size distribution: D10, D50, D90
» Aspect Ratio

* Powder Bulk Chemistry
» EDS

» ICP-MS/OES + LECO

* Part Mechanical Properties
» UTS

> YS

» % EL

» Density

» Fracture Toughness
» Hardness
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Volume Fraction %

Reuse Effects on 316L for Varying Lots

6

10 20

mmm 320 Powder

30

40
Diameter (um)

mmm 200 Powder

Average
Lot Diameter  Aspect Ratio
(Hm)
320 27.5 1.4
200-A 16.9 1.5
200-A Reused 16.7 1.5
200-B 14.4 1.4
200-C 11.6 1.5
Lot D,10 D,50 D90
320 17.4 25.7 36.8
200-A 7.0 16.9 26.5
200- Reused 8.2 15.4 27.5
200-B 7.5 13.3 22.9
200-C 4.2 10.6 20.2




0 | Particle Size Distribution Comparisons

Frequency-based Distribution Volume-based Distribution
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* Particle size distributions trend slightly upward to large diameters with reuse

* Some variation throughout — may be due to sampling




| AM 316L mechanical properties insensitive to powder reuse
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* PSD increases with reuse, but > Density variation: + 0.02 g/cm?3

properties don’t reflect that change > Hardness variation: + 6 HRB

* Mechanical property variability may > UTS & YS variation: + 70 MPa
be primarily due to machine process

variability, not powder » Ductility variation: + 16%

» Fracture Toughness variation: + 45 ft-lbs




Mechanical properties fairly consistent across reuse cycles
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PSD (Number-based)

| Comparing different starting powders .
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| EDS not accurate enough for use in specifications

Oxygen (EDS) Carbon (EDS) Chromium (EDS) Nickel (EDS)
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1.6 9
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14 E 12.0
1.2 5 20 11.5
1.0 . o
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0.0 . I 0 16 . 9.0
’ = = 200 200 320 LPW Hoéganas
LPW  Hogands - o R IRERS LPW  Hoganas Virgin  Reuse Virgin  Virgin Vigrgin
Vlrgln Reuse 23 Vlrgln Virgin  Virgin Virgin Reuse 23 Virgln  Wiggin Wirgin Vlrgln Reuse 23 Vlrgln Virgin  Virgin 23
Oxygen (ICP-MS/OES & LECO) Carbon (ICP-MS/OES & LECO) Chromium (ICP-MS/OES & LECO) Nickel (ICP-MS/OES & LECO)
0.14 0.03 0.03 18.5 14
0.12 0.025 13.5
- 18 18 13
' 0.02
0.08 17.5 12.5
X 0.015 X X 12
0.06 & o o
= 01 = 2115
0.04 s 11
0.02 0.005 ' 10.5 I
0 0 16 16
LPW  Hoganas LPW  Hoganas 200 Virgin 320 Virgin LPW  Hoganas LPW  Hoganas
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* Oxygen currently has no ASTM limit — could preliminarily set limit at 0.1 wt. %
* According to existing ASTM standard for 316L SS, Hoganis would be out of Cr tolerance

General Hypothesis: Powder with higher oxygen % produces weaker mechanical properties



Initial powder quality an indicator of resulting mechanical properties

30 pm thickness 40 pym thickness
A A
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m Density
¢ “200 Reuse 23" has almost double O% without significant decrease in mechanical properties
* This suggests PSD has greater influence on mechanical performance
* Initial PSD-machine layer thickness combo critical to optimize and “lock-1n”
* Is there an optimal combo specific to each machine?

* Besides PSD, can any flowability metrics be used to quickly identify nonconforming powder?




| FT4 Rheometry of 320 powder reuse
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* Virgin powder: higher tap bulk density

* Reused powder: better packing ability, less entrapped air and better ability to release trapped air, less cohesive and
lower tendency to agglomerate, lower mechanical interlocking, lower resistance/shear stress to flow, and more stable
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| Flowability Trends (15 out of 130 flowability metrics show trends)
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Average Powder Height (cm)
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| Flowability Trends (continued)
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| Flowability Trends (continued)
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Volume Fraction Slope - Fluidization Broak Emergy Yield Strength
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* Yield strength, break energy, & volume fraction slope show closest trends of differences between powder types
according to PSD

* Cohesion A & T, height average, volume slope, & volume memory show slight trends between powder types




I Charge Density Variation with Powder Lot
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* Powders with largest avg. diameters require larger layer thickness, reducing mechanical properties at same parameters

* Larger powder sizes switch their plateaus to a negative charge

¢ Reason unknown, size range unknown, effects on resulting parts unknown
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* Type of powder used depends on part requirements & vendor supply

* Essential to tailor machine parameters according to powder size
distribution

* Starting powder PSD is prime indicator of mechanical properties
threshold

* A variety of powder characteristics change with 316L reuse

* 316L mechanical properties insensitive to powder reuse for ProX200,
as long as D_50 doesn’t go above machine layer thickness

* Property variability primarily due to AM machine & location variability

* Different metal alloys will require more stringent limits on required
characteristics (moisture and oxygen content for T1 and Al alloys)

* Each machine type handles and interacts with powder differently
(blade vs roller, L-PBF vs EBM) so powder characteristics may need to
be tied to specific machines to assure reliability

* Coupon density a reasonable indicator of any issues in powder quality

Final Remarks: One Specification per Alloy/AM-machine Combination

Should be Measured Upon Acceptance
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Dv90

Powder X
Alloy

Aspect Ratio
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True/Skeletal
Density

J Morphology
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Chemistry

\ 4
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Could be Tracked Every 5 Uses

316L Powder

—

Yield Strength
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22 | Appendix

Flowability Criteria

Criterion FT4 indices
Powder bed density Good packing ability +Conditioned bulk density (p. )
+Compressibility (CI)
Low entrapped air +Conditioned bulk density (p. )
+Compressibility (CI)
Good ability to release entrapped air +Permeability (+PD)
Powder bed uniformity Low tendency to agglomerate +Aeration energy (AE)
Low mechanical interlocking +Specific energy (SE)
.S e — T
TOICI TS SN S S—" . - +Specific energy (SE)
+Basic flow energy (BEE)

+: index to maximize, 4: iIndex to minimize




23 | Particle Size Distribution Comparisons
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Influence of Powder Size on Laser Interactions
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Effective powder layer thicknesses t.¢
Layer thickness t = 30um, Scanned density 99%

20 T T T T T T T T T T T T T T T T T T T 1
01234567 8 910111213141516 17 18 19 20

Layer No.

——— Pow der density

40% / 30um

—&—— Pow der density

50% / 30um

——— Pow der density

60% / 30um

Pow der density|
40% / 45um

Pow der density|
50% / 45um

Pow der density|
60% / 45um

Suggestion:

10 ym < D¢y < 20 pm

General Feedstock Suggestions

ety ~15 ° The real (t) powder layer thickness should
3 ' be at least 50% higher than the diameter of
90% of powder particles
* Hoganas: 1.25 320 powder: 1.66 200 powder: 2.5
Lefr

Suggestion: 2 < —*~
90

* Suggests there needs to be a sufficient
amount of fine particles in the distribution
to fill voids between coarser particles

-
E
%
N

S

* Hoganas: 1.91 320 powder: 2.10 200 powder: 4.24
S . D90
uggestion: 4 < — <5
D10

Spierings, A. B. (2011). "Influence of the particle size distribution on surface quality and mechanical properties in AM steel parts." Rapid Prototyping Journal 17(3): 195-202.
Spierings, A. B. (2009). “Comparison of density of stainless steel 316L parts produced with selective laser melting using different powder grades.” SFF Symposium 2009, 342-353
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