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3 I INTRODUCTION: Detonation Velocity Dependence on Density

Microstructure and morphology of energetic materials play a
key role in detonation characteristics such as initiation
sensitivity and detonation wave velocity. Tradeoff between:
• Density- dictates detonation velocity and output.

• Porosity and grain size- influence sensitivity.

• Detonation wave velocity in explosive is related to the gradient
of Chapman-Jouget (C-J) pressure with respect to specific
volume and unreacted material density.

Varying unreacted explosive material density in a single sample
would enable localized control of detonation velocity.
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po =unreacted explosive density (g/cm3)
(Cooper, Explosives Engmeerthg 1996)
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PETN with Al confinement bare
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Effect of Density on Detonation Velocity in
Pentaerythritol Tetranitrate (PETN). The
top case (dense PETN) shows higher
velocities than the bottom case (porous
PETN). (Knepper et al., APS SCCM, 2018)



4 I BACKGROUND:Thin-film Deposition of High Explosives

• Physical vapor deposition (PVD) of high explosives has enabled
growth of samples for studying detonation phenomena.

• Pentaerythritol tetranitrate (PETN) is a secondary high explosive
used in defense and mining.

N
Organic CHNO explosive can be deposited via PVD to 

02 'o ,No2

create polycrystalline films of varying thickness.

• Resultant microstructure and morphology largely dependent o o2N , No2
on deposition conditions and interfacial effects. PETN

▪ Patterned aluminum deposition on substrates utilized to create
localized high and low surface energy regions.

PETN deposited onto:
Polycarbonate, polycarbonate/polyimide, polycarbonate/polyimide/aluminum.

PETN film thickness varied from —10 !..1,m to —120 !lin.
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Schematic of the PETN deposition process.
(Knepper et al., Int. Det. Symp. 2014)

Variation in microstructure of
PETN films due to varying
substrate conditions (material
and temperature).
(Knepper et al., J. Mat. Res., 2011)



5 BACKGROUND: Surface Energy Effects on Explosive Films

Optical Microscopy
(scale bar 1 mm)

SEM
(1.14 kX,
scale bar 10 pm)

Fracture Cross-
section SEM
(4.57 kX, scale bar
2 pm, 1 pm, 2 pm)
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Optical microscopy
(top) and SEM images
of surface (middle),
and fracture cross-
sections (bottom) of
PETN films grown via
PVD. Changes in
morphology are due to
interfacial energy
alone. (E. Forrest et
al., APS SCCM 2017)



6 I EXPERIMENTAL: Microdetonation Testing

Utilized existing laboratory-scale
microdetonation test setup for conducting
explosives testing of PETN samples.

• Ultra-high speed imaging to visualize
detonation wave propagation in explosive
sample.
SIMX-15 ultra-high speed framing camera (Specialised
Imaging) used to capture detonation phenomena at
frame rates up to 6.45 MHz (1/155 ns).

Imaged detonation light to estimate D v.
Photograph showing 1 cm x 3 cm
sample mounted in fixture. The
PETN film is initiated at the bottom
and detonation propagates upward.



7 I RESULTS: Film Density Measurement

Film density measured with
precision mass comparator.
• Mettler Toledo AT106 with ±10

uncertainty.

• Accurate measurement of film mass and
volume enables resolving differences
between low and high density PETN.

AT106 precision
mass comparator
(1 pg resolution).
Estimated
measurement
uncertainty is
110 pg.
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surface energy substrates.



8 I RESULTS: PETN Film Characterization

Optical microscopy of patterned PETN
film (on left) and SEM (on right).
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9 I RESULTS: PETN Film Characterization

- Patterned high and low density PETN achieved in single deposition via
different growth modes.
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10 I RESULTS: XRD on PETN

• XRD spectra indicate low density PETN with nearly
random orientation, having some preference for (002) plane.

XRD spectra confirm preferred (220) out-of-plane texture
for denser PETN region.
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11 RESULTS: Microdetonation Testing

Investigated uniform-density P   FTN films (reference case) and variable-
density films.
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Detonation wave evolution for PETN film, all low density
(reference case). FoV = 16.7 mm, 6.45 MHz (1/155 ns).
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Detonation wave evolution for PETN film with 1.6 mm-wide high
density outer lines and low density center region. FoV = 16.7
mm, 6.45 MHz (1/155 ns).



12 RESULTS: Reference Case



13 RESULTS: Variable Density PETN— 1.6 mm-wide Outer Stripes



14 I CONCLUSION AND FUTURE WORK

Localized control of substrate surface energy enables functional
variation in energetic material density when grown via PVD.

- Controlled density variation in energetic material can be leveraged
to locally alter detonation velocity.
• Technique demonstrated for PETN, future work will explore technique for

other energetic materials.

Further work is needed to explore microstructure, grain size, and
grain orientation effects on detonation velocity, especially at sub-
millimeter scales.
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