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3 |INTRODUCTION: Detonation Velocity Dependence on Density

PETN with Al confinement (bare)
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Pentaerythritol Tetranitrate (PETN). The
top case (dense PETN) shows higher
velocities than the bottom case (porous
PETN). (Knepper et al., APS SCCM, 2018)

(Cooper, Explosives Engineering, 1996)



BACKGROUND: Thin-film Deposition of High Explosives LN

Substrate rotation

= Physical vapor deposition (PVD) of high explosives has enabled =

growth of samples for studying detonation phenomena.

Cu cooling block
Substrate
Shadow mask

Explosive vapor

= Pentaerythritol tetranitrate (PETN) is a secondary high explosive
used in defense and mining;

Effusion cell deposition source

*  Organic CHNO explosive can be deposited via PVD to 0o O,NO2
create polycrystalline films of varying thickness. >< Metal vapor o,
* Resultant microstructure and morphology largely dependent ozN'O oo V}f/ \
on deposition conditions and interfacial effects. PETN - -7 - ouree!
Water-cooled hearth
= Patterned aluminum deposition on substrates utilized to create Electron beam deposition source

Schematic of the PETN deposition process.

localized high and low surface energy regions. (Knepper et al., Int. Det. Symp. 2014)

PETN deposited onto:

*  Polycarbonate, polycarbonate/polyimide, polycarbonate/polyimide/aluminum.
*  PETN film thickness varied from ~10 um to ~120 um.

{ Variation in microstructure of
PETN films due to varying
substrate conditions (material

H and temperature).
N (Knepper et al., J. Mat. Res., 2011)




5 |BACKGROUND: Surface Energy Effects on Explosive Films

Low E, Medium E
Optical microscopy
(top) and SEM images
of surface (middle),
and fracture cross-
sections (bottom) of
PETN films grown via
PVD. Changes in
morphology are due to
interfacial energy
alone. (E. Forrest et
al., APS SCCM 2017)

Optical Microscopy
(scale bar 1 mm)
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Fracture Cross-
section SEM

(4.57 kX, scale bar | e e
2 pum, 1 um, 2 pm) 2o - - — Stagusl= 00° EHT= 110K/ WD= 58mm

Mag= 45TKX SignalA=SE2  Width=25.00 ym

StageatT= 00° EHT= 1.10kV WD = 55mm

StageatT= 00° EHT=1.10kV  WD=62mm —
N Sample Mag= 45TKX Signal A=SE2  Width = 25,00 ym

Mag= 457KX Signal A=SE2 Width = 25.00 ym

Sample 0 = 01




« | EXPERIMENTAL: Microdetonation Testing

= Utilized existing laboratory-scale
microdetonation test setup for conducting
explosives testing of PETN samples.

= Ultra-high speed imaging to visualize
detonation wave propagation in explosive
sample.

* SIMX-15 ultra-high speed framing camera (Specialised

Imaging) used to capture detonation phenomena at
frame rates up to 6.45 MHz (1/155 ns).

* Imaged detonation light to estimate D,

Photograph showing 1 cm x 3 cm
sample mounted in fixture. The
PETN film is initiated at the bottom
and detonation propagates upward.




7 |RESULTS: Film Density Measurement

* Film density measured with
precision mass comparatot.

*  Mettler Toledo AT106 with =10 pg
uncertainty.

*  Accurate measurement of film mass and
volume enables resolving differences

between low and high density PETN.

AT106 precision
mass comparator
(1 pg resolution).
Estimated

' measurement

& uncertainty is

4 +10 pg.

PETN Film Density
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PETN density for ~60 pm-thick films grown on low and high
surface energy substrates.



s | RESULTS: PETN Film Characterization

StageatT= 0.0° EHT= 1.10kV WD = 54mm
Mag= 457X  Signal A= SE2 Width = 250.0 um

= Optical microscopy ot patterned PETN
film (on left) and SEM (on right).

10 um
File Name = SCT1280_top_kapton_250um01.tif
10 um
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o | RESULTS: PETN Film Characterization [

= Patterned high and low density PETN achieved in single deposition via
different growth modes.

1 “’“l StageatT= 00° EHT= 110KV WD = 5.4 mm
File Name = SCT1280_top_interface_250um03.tif Mag= 457X  Signal A=SE2 Width = 250.0 um




10 |RESULTS: XRD on PETN

= XRD spectra indicate low density PETN with nearly

random orientation, having some preference for (002) plane.

= XRD spectra confirm preferred (220) out-of-plane texture

for denser PETN region.
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1« IRESULTS: Microdetonation Testing

= Investigated uniform-density PETN films (reference case) and variable-
density films.

Detonation wave evolution for PETN film, all low density Detonation wave evolution for PETN film with 1.6 mm-wide high
(reference case). FoV = 16.7 mm, 6.45 MHz (1/155 ns). density outer lines and low density center region. FoV = 16.7
mm, 6.45 MHz (1/155 ns).



2 IRESULTS: Reference Case




RESULTS: Variable Density PETN— 1.6 mm-wide Outer Stripes




4 1 CONCLUSION AND FUTURE WORK

" Localized control of substrate surface energy enables functional
variation in energetic material density when grown via PVD.

= Controlled density variation in energetic material can be leveraged
to locally alter detonation velocity.

* Technique demonstrated for PETN, future work will explore technique for
other energetic materials.

= Further work is needed to explore microstructure, grain size, and
orain orientation effects on detonation velocity, especially at sub-
millimeter scales.
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