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Announcement: Moodys: Climate change is forecast to heighten US exposure
to economic loss placing short- and long-term credit pressure on US states and
local governments

Global Credil Research - 28 Nov 2017

New Vork. November 28. 2017 -- The growing effects of climate change including dimbing global
temperatures. and rising sea levels. are forecast to have an increasing economic impact on US slate and local
issuers This will be a growing negative credit factor Nr issuers without sufficent adaptaten and mitigation
strategies. Moody's Investors Semen says in a new report.

The report differentates between climate trends. which are a longer-term shift in the climate over several
decades. versus climate shock. defined as extreme weather events ,ke natural cfisasters. floods. and droughts
which are exacerbated by clmate trends. Our credit analysts oonsiders the effects of climate change when we
believe a meaningful credn Impact es highly likely to occur and not be mitigated by issuer acbons. even rf Nes is
a number of years in the future.

Oimate shocks or extreme weather events have sharp. trtirrediate and o.ervable impacts on an issuer's
infrastructure. economy and revenue base. and environment As such we factor these impacts into our
analysis of an issuer's economy. focal posrten and capital infrastructure. as well as management's ability to
marshal resources and implement strategies to deve r.overy.

Exveme weather pattems exacerbated by changing climate trends include higher rates of coastal storm
damage. 

ller 
more frequent droughts. and severe heat waves These events can also cause economic challenges

Itke sma crop yelds. onfrastructure damage. higher emmy demands. and escalated recovery costs.

"Whole we anticipate states and muntopalities wtll adopt mitigatiOn strategi. fOr Nese evente• costs to emPNY
Nem could also became an ongong credit challenge: Michael Wertz. a Moodys Vice President says. 'Our
analysis of economic strength and diversity. access to liquidity and levers to raise addrtenal revenue are also
key to our assessment of climate nsks as is evaluating asset management and governance'

One example of a mate shock driving rating change was when Hurricane Katrina struck the City of New
Oyeans (A3 stable). In addrbon to widespread infrastructure damage the cays revenue declined sognificantly
and a large percentage of its population permanently tel New Orleans

'US issuer resilience to extreme dimate events is enhanced by a vanety of local. state and federal tools to
improve immediate respOnse and long-term recovery from climate shocks: WertZ SayS

For issuers. the availabillty of state and federal resources is an important element that broadens the response
capabilities of local governments and ther ability to mittgate credit impacts As well. all municipalities can
benefit frorn the deployment of broader state and federal aid partxcularly disaster ad from the Federal
Emergency Management Agency IFEMAI to .1p with economic recOvery•

Moodys analysts weigh the Impact of donate nsks ynth stales and munictpalibes• preparedness and planning
for these changes when we are analyzing credit ratings. Analysts for municopal issuers with heher exposure to
danate nsks will also focus on current and future mleabon steps and how these steps will impact the issuer's
overall profile when assigning rategs.

The report 'Environmental Risks — Evaivaling the impact of climate change m US stale and local issuers.' is
mpedys subscnbers at NV ByeveW moodys corn researchclocumentcontempage asp.'

docid=P9M1071919.
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O 2018 Moody s Cmmoatoon. Moody s Inv.tors Service. Inc . MooCy s Analybcs. Inc anceor their licensors and
affiliates (C011.tively. 'MOODY S.) All .0M teSer,ed

• Energy-Water systems are a
particularly good example of a
connected infrastructure system
that is inherently complex,
interdependent, and co-evolving
requiring multi-sector, multi-scale
analysis.

• These infrastructure systems are
under unprecedented stress from
growing demands, extreme
weather and aging.

• Identifying vulnerabilities and cost
effective adaptive measures is a
first order science challenge.

2017 a 2018 costliest
weather year: $6536

CBS Jan. 22, 2019
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IM3 Vision

Develop a flexible and integrated modeling framework that captures

the dynamic multi-scale interactions among energy, water, land,

weather/climate, socioeconomics, infrastructure, and other sectors

Use this framework to study the vulnerability and resilience of

coupled human and natural systems from local to continental scales

under scenarios that include short-term shocks, long-term stresses, and

feedbacks associated with human decision-making

Explore how different model configurations, levels of complexity,

multi-model coupling strategies, and spatiotemporal resolutions

influence simulation fidelity and the propagation of uncertainties across a

range of sectors, scales, and scenarios



Study Site

Provisioning Watershed

• San Juan is example of resource provisioning
watershed exporting much of the water,
energy and other goods produced.

• Potential for cascading impacts
"downstream".

• Growth in water use is not driven by new
development by full utilization of committed
water rights.
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o San Juan River in Four Corners Region of Southwestern
United States.

o Runoff originates in San Juan Mountains (83%). Largely
snow melt dominated system.

o Primary management feature is Navajo Reservoir.
o Major water users include:

• Native American
• Irrigation,
• Multiple power plants and limited hydropower,
• Municipalities,
• Interbasin transfers



Multi-Model Platfor 

o Framework that links natural and
engineered systems to evaluate
climate vulnerabilities and adaptive
measures:

Multiple interacting sectors, and

Multiple forcings.

Simulations performed and
compared across platforms of
differing model fidelity in
representation of water
infrastructure and operational
protocols:

Operations Model (lower-fidelity)

Planning Model (high-fidelity)

L .

Bennett, K.E., Tidwell, V.C., Llewellyn, D., Behery, S., Barrett, L., Stansbury, M. and Middleton,
R.S., Threats to a Colorado River provisioning basin under climate and societal scenarios, Environ.
Res. Commun. (1), DOl: 10.1088/2515-7620/ab4028.
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Scenario Analysis 

Planned experiments provide a
unique opportunity to understand
how interdependent multi-sector,
multi-scale systems respond to
changes in drought.
How response differs among impact
metrics

Non-Local Local
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Instream Flows

Water Deliveries
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Hydrology

o Variable Infiltration Capacity
(VIC) model at 1/16th degree

New MODIS data, including
time series for each grid cell
for albedo, vegetation spacing
and LAI

Cell Energy and Moisture Fluxes
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o Downscaling using Mutivariate Adaptive
Constructive Analogues (MACA) data set
(Abatzaglou and Brown, 2011)



River Reservoir Ro

o San Juan Baseline
Model constructed
in Riverrare

o Colorado reservoirs
and priority
administration
modeled with
StateMod

o Three reservoirs

o 87 River reaches

o 30 Water users
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Climate Impact on
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Bennett, K.E., Tidwell, V.C., Llewellyn, D., Behery, S., Barrett, L., Stansbury, M. and Middleton,
R.S., Threats to a Colorado River provisioning basin under climate and societal scenarios, Environ.
Res. Commun. (1), DOI: 10.1088/2515-7620/ab4028.



Role of Model Fidelity
Traces of annual averages for the
five system metrics.

• Comparison drawn between high
and low fidelity models for
different ESMs

• Models (high vs. low fidelity) show
striking similarity in response to
evolving climate
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Projection of Impacts

o Lower-fidelity
Operations Model
consistently projects
more sever basin impacts
relative to the higher-
fidelity Planning Model:

• Five water metrics,

• Five climate models, and

• Two water use scenarios.

• One exception to this
rule.
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Tipping Points

o Under the most extreme and prolonged dry
conditions the higher-fidelity Planning
Model was unable to execute.

o Operational rules within the Planning
Model had to be adjusted.

o Improved resolution in basin infrastructure
and operational rules enhanced model
sensitivity and thus aided in identification
of system tipping points.
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Contributing Factors

• Modeling of SJC infrastructure in
Planning Model reduced San Juan
River depletions relative to
Operations Model (25-50%).

• Explicit simulation of water
depletions in Planning Model vs.
statistical regression in Operations
Model.

• Model inflows were much more
geospatially distributed in the
Planning Model.

• Reservoir operational rules are more
detailed in the Planning Model.
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Role of Model Fidelity

• Plotted is the percent difference between the projected
mean metric value (average 2014-2099) and its
corresponding historic value (1950-2013).

• Box and whisker plots show the range in values across the
five ESMs.

• Generally negative impacts from climate change and
increased water use on all five metrics.

• Multi-model system that lacked a full accounting of
system infrastructure and management operations
consistently overestimated water-related risks.

• Similar trends are expected in other basins, as the
purpose of these interdependent water infrastructure and
management operations is to buffer impacts in times of
drought.

• However, large uncertainty persists across possible
climate futures
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• Navajo Storage: Operations

• Shortage: Operations

• Instrearn Flow Violation: Operations

• &IC Diversion: Operatons

• SJR Discharge: Operations

• Navajo Storage: Planning

• Shortage: Planning

111 Instrearn Flow Violations: Planning

• MC Diversions: Planning

• SJR Discharge: Planning
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• Environmental
Conditions
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Operations
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Quantifying the adaptive water management decision in the San Juan River Basin under climate change

Yi-Chen Ethan Yang, Lehigh University, Bethlehem, PA, United States, Kyongho Son, University of California,

Santa Barbara, Santa Barbara, CA, United States and Vincent Carroll Tidwell, Sandia Natl Laboratories,

Albuquerque, NM, United States Poster on Monday afternoon
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Climate-Water Impacts on Interconnection-Scale Electricity System Planning

Stuart Michael Cohen, Ana Dyreson, Jordan Macknick, Ariel Miara, Vincent Carroll Tidwell, Nathalie Voisin, Sean

William Donald Turner and Michael Bailey, Poster on Tuesday afternoon



Takeaways

• Compared simulation platforms of differing model fidelity in their
representation of water infrastructure and operational protocols.

• Simulated five future climate projections and two water use cases.

• Models (high vs. low fidelity) show striking similarity in response to evolving
climate.

• Lower-fidelity Operations Model consistently projects more sever basin
impacts relative to the higher-fidelity Planning Model.

• Improved resolution in basin infrastructure and operational rules enhanced
model sensitivity and thus aided in identification of system tipping points.


