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CINT is a DOE user facility with focuses on
Nano Science & Nano Integration

Nanophotonics & Optical
Nanomaterials (NPON)

Synthesis, excitation, and energy transformations
of optically active nanomaterials
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Soft, Biological, & Composite
Nanomaterials (SBCN)

Solution-based nanomaterials synthesis
and assembly of soft, composite, and
artificial biomimetic nanosystems

ln-situ Characterization
and Nanomechanics

Developing capabilities to study tne dynamic
response of materials and nanosystems to
mechanical, electrical, or other stimuli

Quantum Materials maw
Understanding and designing nanomaterials
to create new functionalities based on
quantum effects that span multiple length
scales (from nm to mm)



Band alignment of transition metal dichalcogenide
dictates the properties of TMD heterostructures

.

Type I Type II Type III

..] IIo
.--;14,i,..-7---. __ -1— Q

11-
___a___

ill 111 1- I
Ozgelik, et al., Phys. Rev. B 94, 035125 (2016)

TMDs are ideal platforms to create
heterostructures with designed properties
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Most studies of the ionization energies are
based on modeling
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Rasmussen & Thygesen, J. Phys. Chem. C, 2015, 119, 13169

Systematic experimental verification is missing

Required (or preferred) characteristics for the experimental approach
• Microscopy function to locate small specimens (good lateral resolution)

• Environment that has little impact on the sample's electronic properties, i.e. vacuum

• Adequate energy resolution

• No need to add a measurement-specific modification to the sample, i.e. electrical ground



We extract Evac & valence band edge at Brillouin zone
center from photoelectron (or photoemission) spectra
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Typical photoelectron spectra
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We use photoemission microscopy &
spectroscopy to evaluate the band alignment
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Objective
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= 213 nm,
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• Specifications of the photoemission electron
microscope (PEEM)
— Spatial resolution —15 — 200nm

— Energy resolution —0.2 — 0.5eV

• Deep UV monochromatic
light sources are used for the
work presented here
— = 180 — 350nm (hv = 3.54 —

6.89eV): tunable-energy photon
source based on a Xe-lamp

• Spectrum is extracted from
each pixel in the image stack
or data cube, and fitted to
create maps

• Meet the four required (or
preferred) characteristics for
systematic measurements



How band alignment changes for isoelectric
TMDs
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We determine E vac & valence band edge on
MoS2 multi layers

Photoemission intensity 12x10
3 
—

Ph
ot

oe
mi

ss
io

n 
in
te
ns
it
y 
(a
.u
.)
 

10 —

8

6

4 —

2

hv = 6.70 eV
1ML MoS2
2ML MoS2

— 3ML MoS2

-1.0 0.0 1.0 2.0

Vacuum level
Evac

(1ML MoS2 ref.)

— o 2 a)
(1)

- 0.0

— -C).2 2

2
— -0.4 a)

I -0.6 >

-0.8 II
T.)

(eV)

Electron kinetic energy (eV) Valence band edge near F-point

N EVB

• Concurrent imaging
and spectroscopy

Berg, et al., Layer-Dependence of the Electronic Band Alignment of Few-Layer MoS2 on Si02
Measured Using Photoemission Electron Microscopy, Phys. Rev. B, 95, 235406 (2017)
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We measure photoemission spectra from
MoSe2, WS2, and MoS2
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K. Keyshar, et al., Experimental determination of the ionization energies of MoS2, WS2,
and MoSe2 on Si02 using photoemission electron microscopy, ACS Nano, 11, 8223, 2017
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Hetero-junctions are formed between MoS2
with different thicknesses
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r r
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Berg, et al., Layer-Dependence of the Electronic Band Alignment of Few-Layer MoS2 on Si02
Measured Using Photoemission Electron Microscopy, Phys. Rev. B, 95, 235406 (2017)
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Qiu, et al., Phys. Rev. B 93, 235435 (2016)

• Valence band edge signal comes
from near F-point due to the limited
momentum range accessible by
DUV photon-photoemission

• LEF_K based on DFT calculation
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Hetero-junctions are formed between MoS2
with different thicknesses

MoS2

dEr_K
—a5eV

1 2 3

Number of layers

Berg, et al., Layer-Dependence of the Electronic Band Alignment of Few-Layer MoS2 on Si02
Measured Using Photoemission Electron Microscopy, Phys. Rev. B, 95, 235406 (2017)
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Qiu, et al., Phys. Rev. B 93, 235435 (2016)

• Valence band edge signal comes
from near F-point due to the limited
momentum range accessible by
DUV photon-photoemission

• LEF_K based on DFT calculation
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MoS2 with different thicknesses forms
type-I hetero-junctions

MOS2

1 2 3

Number of layers

Berg, et al., Layer-Dependence of the Electronic Band Alignment of Few-Layer MoS2 on Si02
Measured Using Photoemission Electron Microscopy, Phys. Rev. B, 95, 235406 (2017)

• Experimentally-determined quasi-
particle band gap for 1L
— Liu, et al., PRL, 122, 246803, 2019

— Rigosi et al., PRB 94, 075440, 2016

• GW-calculated quasi-particle band
gap for multilayers
— Scaled to account for substrate's

dielectric environment

• Type-I band alignments at the
junctions between monolayer and
bilayer and bilayer and trilayer



Experimentally determined ionization energies
match well with those from DFT calculations

qMW.

400 800 1200 (a.u.) 200 400 600 800 1000 (a.a.)

MoS2

ML

11,245sv
120µm1

500 1000 1500 2000 (a.u.)

• Ionization energy decreases from
MoS2, WS2, to MoSe2, anticipated
from the electronegativities of the
constituent atoms

• Good agreement with GW calculation

• Heterostructures containing MoS2,
W52, to MoSe2 are likely to display
type II alignment
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Keyshar, et al., Experimental determination of the ionization energies of MoS2, WS2, and
MoSe2 on Si02 using photoemission electron microscopy, ACS Nano, 11, 8223, 2017
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GW Theory: Rasmussen & Thygesen,

J. of Phys Chem., 119, 13169, 2015



We compare the electronic structures of free-
standing and Au-supported WS2

TMD

Au

Si02

Si

• Work function of the Au-supported
areas is significantly larger than that
of free-standing areas reflecting the
higher work function of Au -
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i i i i i
6 8 10

Surface distance (um)

12 14

10:15 AM - FF01.08.01, Jose Fonseca, et al., Non-Local Quantum Emission in 2D Semiconductors via Oriented
Pore Enabled Network (OPEN) Films



Summary

• PEEM coupled to deep ultraviolet (DUV) light sources is an
emerging analytical capability to explore the electronic
properties of spatially inhomogeneous materials
— We determined ionization
energies of atomically-thin
transition metal dichalcogenides
and deduced their anticipated
heterointerface band alignments

— Other examples:
• Graphene multilayers: Robinson, et al., Scientific Reports 8, 2006 (2018)
• Polycrystalline CdTe: Berg, et al., ACS Appl. Mater. Interfaces, 10, 9817 (2018)
• Polycrystalline metal films: Berg, Bussmann, et al., in preparation
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