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CINT is a DOE user facility with focuses on
Nano Science & Nano Integration

Nanophotonics & Optical In-situ Characterization
Nanomaterials (NPON) and Nanomechanics
Synthesis, excitation, and energy transformations Developing capabilities to study the dynamic
of optlcally active nanomatenals response of materials and nanosystems to

mechanical, electrical, or other stlmull

katterlng -SNOM

TEM connected
to ion beamline

Soft, Biological, & Composite
Nanomaterials (SBCN)

Solution-based nanomaterials synthesis Quantum Materials

and assembly of soft, composite, and Understanding and designing nanomaterials
» artificial biomimetic nanosystems o to create new functionalities based on
quantum effects that span multiple length
scales (from nm to mm)

Cryo-electron
microscopy




Band alignment of transition metal dichalcogenide
dictates the properties of TMD heterostructures
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Ozgelik, et al., Phys. Rev. B 94, 035125 (2016)

TMDs are ideal platforms to create
heterostructures with designed properties




Most studies of the ionization energies are
based on modeling
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Rasmussen & Thygesen, J. Phys. Chem. C, 2015, 119, 13169

Systematic experimental verification is missing

Required (or preferred) characteristics for the experimental approach
» Microscopy function to locate small specimens (good lateral resolution)

» Environment that has little impact on the sample’s electronic properties, i.e. vacuum
» Adequate energy resolution

* No need to add a measurement-specific modification to the sample, i.e. electrical ground



We extract E .. & valence band edge at Brillouin zone
center from photoelectron (or photoemission) spectra

A

Sample
I
4—
to MCP<i — photoemitted
detector < electrons !
+V, gj
~ s o
Energy lonization
Filter Energy
flled | oM----- +
states
Xe Lamp
(3.5-6.9 eV tunable)
He Lamp ol
He1(21.22 eV)
Sample

Photoemission process

Figure courtesy: M. Berg, C. Chan

~

Intensity (a.u.

1200+

1000

800+

600

400+

200

Typical photoelectron spectra

KE
lonization
_ enerqy
E. L. Lina
_ 9 ItV
8 6 ' -4 -2 0 2

Start voltage, V; (V)

BE = KE — hv



We use photoemission microscopy &
spectroscopy to evaluate the band alignment

Xe Lamp » Specifications of the photoemission electron
(3.0-6.9 eV tunable) microscope (PEEM)

— Spatial resolution ~15 — 200nm
— Energy resolution ~0.2 — 0.5eV

Objective » Deep UV monochromatic
Lens ,
light sources are used for the
. work presented here
mar E — A =180 —350nm (hv = 3.54 —
o 6.89eV): tunable-energy photon
source based on a Xe-lamp

Separator

« Spectrum is extracted from
each pixel in the image stack
or data cube, and fitted to
create maps

Electron Spes | » Meet the four required (or
preferred) characteristics for
systematic measurements

(electron energy filte

Figure courtesy: M. Berg
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3 How band alignment changes for isoelectric
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’\‘D \ We determine E . & valence band edge on
\ 4 -
P MoS, multi layers
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We measure photoemission spectra from
MoSe,, WS,, and MoS,

MoS,
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K. Keyshar, et al., Experimental determination of the ionization energies of MoS,, WS,,
and MoSe, on SiO, using photoemission electron microscopy, ACS Nano, 11, 8223, 2017



Hetero-junctions are formed between MoS,
with different thicknesses

Avac
~:\0Wn;ev “BmeV
0_ ,,,,,, e I e
iy A =y
° =
2
o 2 0,
W
TS T8 B
>
o
o
- .
() ] s S Qiu, et al., Phys. Rev. B 93, 235435 (2016)
(o)}
=
o * Valence band edge signal comes
BEry y  Errn from near I'-point due to the limited
momentum range accessible by
DUV photon-photoemission

3 « AE-, based on DFT calculation
Number of layers

Berg, et al., Layer-Dependence of the Electronic Band Alignment of Few-Layer MoS, on SiO,
Measured Using Photoemission Electron Microscopy, Phys. Rev. B, 95, 235406 (2017)



Hetero-junctions are formed between MoS,
with different thicknesses
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« Experimentally-determined quasi-
particle band gap for 1L
— Liu, etal., PRL, 122, 246803, 2019
— Rigosi et al., PRB 94, 075440, 2016

» G\W-calculated quasi-particle band
gap for multilayers

— Scaled to account for substrate’s
dielectric environment
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* Type-l band alignments at the
junctions between monolayer and
bilayer and bilayer and trilayer

Number of layers

Berg, et al., Layer-Dependence of the Electronic Band Alignment of Few-Layer MoS, on SiO,
Measured Using Photoemission Electron Microscopy, Phys. Rev. B, 95, 235406 (2017)



N\ Experimentally determined ionization energies

match well with those from DFT calculations
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* lonization energy decreases from
MoS,, WS,, to MoSe,, anticipated
from the electronegativities of the
constituent atoms

» Good agreement with GW calculation

 Heterostructures containing MoS,,
WS,, to MoSe, are likely to display
type Il alignment

Binding energy (eV, E, ... ref.)

Keyshar, et al., Experimental determination of the ionization energies of MoS,, WS,, and
MoSe, on SiO, using photoemission electron microscopy, ACS Nano, 11, 8223, 2017
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We compare the electronic structures of free-
standing and Au-supported WS,

TMD

» Work function of the Au-supported
areas is significantly larger than that
of free-standing areas reflecting the
higher work function of Au
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In collaboration with J. Fonseca, J. T. Robinson, Naval Research Laboratory

10:15 AM - FF01.08.01, Jose Fonseca, et al., Non-Local Quantum Emission in 2D Semiconductors via Oriented
Pore Enabled Network (OPEN) Films



Summary

« PEEM coupled to deep ultraviolet (DUV) light sources is an
emerging analytical capability to explore the electronic
properties of spatially inhomogeneous materials

— We determined ionization
energies of atomically-thin
transition metal dichalcogenides
and deduced their anticipated
heterointerface band alignments
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— Other examples:

« Graphene multilayers: Robinson, et al., Scientific Reports 8, 2006 (2018)
« Polycrystalline CdTe: Berg, et al., ACS Appl. Mater. Interfaces, 10, 9817 (2018)
» Polycrystalline metal films: Berg, Bussmann, et al., in preparation
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