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Crucial Need for Better Energy Storage Options
Projected Changes in Snow,
Runoff, and Soil Moisture
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New elevation data triple estimates of global
vulnerability to sea-level rise and coastal flooding 40'

Scott A. Kulpt• & Benja Mtr1 H. Strdt

190 M people (150-250 M, 90% 30°

CI) currently occupy global land 40
below projected high tide lines for

2100 under low carbon

emissions..."
Kulp, S.A., Strauss, B.H. Nat
Commun. 10, 4844 (2019) 
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How Inexpensive Must
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The "Conventional" Li-S Battery

Xu et al. J. Mater. Chem. A. 2014, 2, 19941-19962.
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Niche market penetration

Zephyr UAV (Powered by Sion's

Li-S battery)
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Li-S Electrolytes Have Been Divided Into 4 Categories

l) Dilute Electrolytes (-0.5-1.5 M)

i. High EPD Solvents

➢ Ex. DMF, DMA, DMSO

ii. Moderate EPD Solvents

➢ Ex. DOL:DML, THF, Glymes

iii. Low EPD Solvents

➢ Ex. ACN, Sulfolane

II) Solvate Electrolytes

➢ Ex. ACN2LiTFSI, THF2LiTFSI, SIS7

(DOL:DME), Glyme-based Solvate

ILs & sub-Ils
Ilb?) Water in Salt

III) Ionic Liquids

IV) Solid-State
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Each "Class" Generates a Unique Discharge Signature
1.
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Lower solubility Equilibrium does not favor $3.-

1. Cuisinier et. al. Adv. Energy Mater., 2015, 5 (Nazar Group, Waterloo) 

2. Lee et. Al. ACS Cent. Sci. 2017, 3, 605-613 (Nazar, Waterloo; Balasubramanian, ANL) 
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Electrolytes Exist on a "Solvation" Continuum

l) Dilute Electrolytes (-0.5-1.5 M)

i. High EPD Solvents

➢ Ex. DMF, DMA, DMSO

ii. Moderate EPD Solvents

➢ Ex. DOL:DME, THF, Glymes

iii. Low EPD Solvents

➢ Ex. ACN, Sulfolane

II) Solvate Electrolytes

➢ Ex. ACN2LiTFSI, THF2LiTFSI, SIS7

(DOL:DME), Glyme-based Solvate

ILs & sub-Ils

II) Ionic Liquids

IV) Solid-State

JCESR
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outcomes should be
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Solubility Plays a Critical Role in Mechanism
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Control over solubility means
control of material movement

Li2Sy(5) and Li2S particle size is
dependent on solubility
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DN is a Poor Descriptor of LiPS Solubility
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LiPS Solubility Best Described by AHSolv:Li2S4*[ADS]
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Complexation with Li2S4 a Better Descriptor for Solvation Enthalpy
w/ Pure Solventop...4(0
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Raman Fits Determine Coordinated Fractions of Solvents

-THF

- .1.HF40.0

-THF20.00

- THF10.0

-THF5.0

- -THF3.5

-THF2.8

- -THF2.0

-THF1.25

860 880 900 920 940

Wavenumber (cm-1)
960

Vibrational
spectroscopy unveils
elyte structure.
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Complex Enthalpy and Structure Produce EDN
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EDN is a Good Descriptor for [Sups]sat
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Is Solubility the Main Driver of Mechanism?
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Independent of Solvent, S3.- in solution is linked to cell potential

Speciation in Various Solvents
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Gutmann DN is not a complete descriptor for S3.— in solution

Cation <-) Sn2- Interaction Lithium-Sulfur Battery
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-_+
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(2018) 
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Increasing Nil Destabilizes s3.- Due to Decrease in
Permittivity and/or "Hard Acid" Interaction
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Speciation Described by Function of AHEN:Li2S4, EAN, and E
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Discharge Mechanism Divided into 3 or 4 Regions

Region 1 (Consumption of Sem):

-Y S° + 2Li+ + 2e —> Li2S0 8

s 2-
8
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Region 2 (PS Speciation Transition):

Y(Q) Qrheory/Q

Region 3 (Formation of Li2S(S) and/or Li2S2(0):

Li2Sy +2Li+ + 2e- —> XLi2S(S) + ZU2S20) + (2 — X — Z)Li2Sy'

y' = minimum y

1[Li2Sy]QRT1 ao (  1  \I
E(Q) aoE° — {1,n   + Ln

[Li2S31(2)i,Q F ni \[4];/8

L

- 1 + e-k(Q-Q°)
Fraction of echem described
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Thermodynamics Governed by Nernst Equation

„ RT1 ai 1[Li2s y1n\ 
1

E (Q) -
i,Q F ni \Nu (2318

{Ln  + Ln (
[Li2sy1Q)1

,Q64012Q3SOCI 34#2)
[S p s] J o F ; ;00 << Q2<<Q dt p 1

[S pski= [S Ps] twItiRscitd41

Pfii 
Q t[qtas),,,ihmTir-aa9t)(/ QQ1,)}3§00cw \\

(011136-4f176—* itvQMBIOppl
e s

Fraction of echem described
by logistic function

L

a"2 - 1+ e-k(Q-Qo)

;212{ki*gi)t)de IA'QMory
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6Na Measures Emergent Properties (Relative Al-1) Not Predicted by a
Linear Combination of AI-ISolv:Li2S4
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Solubility vs. EDN Resembles Trend vs. Theoretical AG (volumetric)
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Speciation Dependent on Place in Discharge
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Electron Pair Donation  (EPD) Strength Has Been a Suggested Descriptor

for Solubility

• Suggestions in the literature that LiPS solubility is related to the solvent's Gutmann Donor Number
(DN)*.

El This has not been explicitly quantified

JR

tl

tL

C Cl

CL

Gutmann, V. Electrochimica Acta. 1976, 21, 661-670

D
o
n
o
r
 N
u
m
b
e
r
 [
kc
al
im
ol
] 

50 -

NaCI04/Solvent

•
• rf

•
Lineare Regression
Y=A+EI`X

= 3173077 ± 1.0303
B = 2.113e14-± 0.15193

112 = 0.905.5
in

5 10. 15

23Na chemical shirt

Schmeisser et al. Chem. Eur. J. 2012, 18, 10969 — 10982

Classic Gutmann Donicity model. A calorimetric Gp-23Na

measurement gives a AEI value for the complex 6d-7Li ̂  6p-7Li

formation with SbCl5.

= -270 ppm

*Rauh et al. Chem. J. lnorg. Nucl. Chem. 1977, 39, 1761-1766

>> Gd-23Na = +9.7 ppm

Zavadil Group 28

Sandia
National
Laboratories


