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Crucial Need for Better Energy Storage Options

ARTICLE
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vulnerability to sea-level rise and coastal flooding
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below projected high tide lines for
2100 under low carbon
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The “Conventional” Li-S Battery

Niche market penetration

Discharge
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Li-S Electrolytes Have Been Divided Into 4 Categories

I) Dilute Electrolytes (~0.5-1.5 M)

i. High EPD Solvents 1 Higher 1% reduction potential
» Ex. DMF, DMA, DMSO Lower 2" reduction potential
ii. Moderate EPD Solvents
» Ex. DOL:DME, THF, Glymes Higher solubility

iii. Low EPD Solvents

Greater stability for S;°-
» Ex. ACN, Sulfolane

. ~ W 100 mVs |
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18 20 22 24 26 28 30 32 “] Blm h / ACNZ'OLITFSI:TTE
|V) Solid-State Potential (V) versus Li'/Li _mmﬂ@ , ;m z)zm 2);@ &;ﬁ — ;m
1. Jung et. al. Int. J. Electrochem. Sci., Vol. 3, 2008 (Kwak Group, Korea) o EW))% i
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Each “Class” Generates a Unique Discharge Sighature

1. 2.
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Lower 1< reduction potential Lower solubility  Equilibrium does not favor S,*-
Higher 2" reduction potential
1. Cuisinier et. al. Adv. Energy Mater., 2015, 5 (Nazar Group, Waterloo)
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J( | EQR _ National
3 D Zavadil Group

5 Laboratories




I) Dilute Electrolytes (~0.5-1.5 M)

Electrolytes Exist on a “Solvation” Continuum

High EPD Solvents

> Ex. DMF, DMA, DMSO
Moderate EPD Solvents

» Ex. DOL:DME, THF, Glymes
Low EPD Solvents

» Ex. ACN, Sulfolane

Il) Solvate Electrolytes
» Ex. ACN,LITFSI, THF,LITFSI, SIS7

Il) lonic Liquids

IV) Solid-State

JEESR
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Pang et. al. Nat. Energy, 2018, 3
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Solubility Plays a Critical Role in Mechanism

L — 1M LiTFSI/DOL:DME (0.2M LiNO3)
| —ACN1.6LITFSITTE (1:1)

Volume: E/S 3 mL/g
Rate: C/30
S/CNT/PEO 64/30/10

600 800 1000 1200 1400

Capacity (mAh/g)

Li,S, () and Li,S particle size is
dependent on solubility

Control over solubility means
control of material movement
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DN is a Poor Descriptor of LiPS Solubility
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LiPS Solubility Best Described by AHc_,,.;i,s4*[ADS]
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Complexation with Li,S, a Better Descriptor for Solvation Enthalpy

w/ Pure Solvent (AHSoIsziZS4)
> 2 95 Combint :
RGN = PhON ~ | ombining computation
w/ 2Na-NMR = AH .14
S 75 e,
o T
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Raman Fits Determine Coordinated Fractions of Solvents

—THE THF1_25LITFS| e
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spectroscopy unveils

elyte structure. n = Coordination Number

J;= Free Scattering Coeff.

Free Solvent Fraction (X.so1,)
&

m }‘ J. = Coordinated Scattering Coeff.
A, MIHLLL [Solv,] = [Solv] — n[Li"]
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Raman Fits Determine Coordinated Fractions of TFSI-
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Complex Enthalpy and Structure Produce EDN
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.|
Is Solubility the Main Driver of Mechanism?

“A —— G2LITFSI (0.8:1) \
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| T second critical factor :
-4 2
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Pang et. al. Nat. Energy, 2018, 3 (Nazar Group, Waterloo)
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.. nnnnnnnnooo... .|
Independent of Solvent, S;°~ in solution is linked to cell potential

Speciation in Various Solvents 2551 e

i 0 5 1 ///___,,-——“’

5 = 45 4 gl
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S -TMS —2MeTHF - yos | | | | | | | | | |
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Gutmann DN is not a complete descriptor for S;°~ in solution

Cation & S, Interaction Emmmp Lithium-Sulfur Battery

High-donor solvents
(DMSO, DMA, DMF)

A s6
S, + %S,
2s3

He et al. J. Electrochem. Soc., 165 (16) A4027-A4033

Low-donor solvents
(DOL:DME, ACN)
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Speciation is clearly dependent on other characteristics

40 \‘\ L] [ L [ [ ]
o @ |The salt and its concentration play a significant role.
3 30} \ 5 mM "Li,Sg" in sovents |
= | with 1 M LiTFS
§ 2of ‘ / Comparison of LiTFSI to Mg(TFSI), in various solvents
2 10F a) 5 S, sg' sg‘ sg Sy a) 3 S, S: & S§ S a) 3 S, S; 82 Sg Sy Si
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R 300 500 600 700 A —1.0mM - /~.-/ I_ 1l_o mM — 1.0 mM
Wavelength [nm] 5 21 \/ —0.2mM 5 24 —02mM 5 21 —0.2mM
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2 —10mM | 4 —10mM | 8 N —1.0mM
3 \ 5mM"LiZSs"inACNb 1 * N —o02mm | © 1 \ —gaen | © \/q ——02mM
g 4 ; with 0 - 1000 mM LiTFSI- _/\ = DMSO s DA N in ACN
(@] ° [
2 oo INCreasing 300 400 Ioo 900
Qo 1.0_1 00l \ ._( 2+ .+
. LiTS| .| N S eMg > Li; | Effect va rles by solvent
0.0 e =G
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0.0

w
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-

20F
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300 400 500 600 re MgS MTFST, R
Wavelength [nm] 2] '
1 Li,SLITFSI g ] LLSJLITFS
5 mM "Li,Sy" in ACN b l © 0
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TBA*has ° ] ok
; little effect -2 inDMSO | 4] in DMF in ACN

| M 1N

20 15 1.0 05 0.0 2.0 15 1.0 05 0.0 2.0 15 1.0 05 0.0
potential / V vs. Fc/Fc' potential / V vs. Fc/Fc' potential / V vs. Fc/Fc'

current / pA
o

current / pA
o

]
w

-

[}
(o]

300 400 500 600 700

Wavelength "Ml He et al. ). Electrochem. Soc., 2018, 165 (16) A4027-A4033
Bieker et al. J. Phys. Chem. C 2018, 122, 21770-21783 Sandia
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.. nnnnnnnnooo... .|
Increasing [Li*] Destabilizes S;°~ Due to Decrease in

Permittivity and/or “Hard Acid” Interaction

—(G4)1.00
----- ACN2.4 —ACN2.8 -—-ACN4.0 o Glymbes maintain S;°~ | - (G4)1.15
w 8 stabilization deeper —(G4)1.25
% --ACN6.0 —-ACN32.0 - ACN77 é into salt series. --(G4)4.50
2 2 ~(G4)8.0
Q —-ACN192 -—-ACN380 -ACN1900 T -G4
o A
% —ACN ‘ Solvent:Salt ratio g
> Z ST
© ACNXxLIiTFSI S -
g ,,,,,, P ——— S it
o) e— | 225 325 425 525 625 725 825
2 53 A (nm)
—THELSLITESI
~THF2.0LiTFSI

200 | 800 —THF2.4LTFSI
—THF2.8
-THF4.0

—THF6.0

Some solvents
never show S;*-

Normalized Absorbance

nnnnnnnnnnnnnnn
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Speciation Described by Function of AHg,,. i»s4» EAN, and €
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.|
Discharge Mechanlsm Divided into 3 or 4 Regions

Region 2 (PS Speciation Transition):
y(Q) QTheory Q

Region 1 (Consumption of Sg°):

250 +2Li" + 2e” — Li,S,

-
S0, % ' Region 3 (Formation of Li,S, and/or Li,S,):
2, 5,2 = Li,S, +2Li* + 2¢~ — XLi,S, + ZLi,S,, + (2 - X - Z)Li,Sy’
SIZ_ y’ = minimum y
y
q—
n % "
/\ . b0 - Y aort - “w{m<[ : y]o>+m( ! )}
ALY Ty / -
- 2 : o T Lagm gl )\ RS,
y
o= L Fraction of echem described
Yo e wm we mm w mm g L0 7 1 4 e~ k(@-Q0) by logistic function
et Sandia
National

Laboratories
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.|
Thermodynamics Governed by Nernst Equation

_ RT Ao [LiZSJ’]Q 1
E(Q) = Ei’qalqE “F Do {Ln<[58]qy/8 +Ln([uzsy]0>

Fraction of echem described

3B600{-)y$0Q) by logistic function
[SPS] OQdCPm (é‘ﬁrﬁ m < @<<@dt?pl .
[Spslo= [Sps]emurn@s@iicpt & Q% Rypindey 1 + e~k(@Q-Q,)

0 35600 =) } 58
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&\, Measures Emergent Properties (Relative AH) Not Predicted by a
Linear Combination of AH_,,.i»s4

1.0
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Solubility vs. EDN Resembles Trend vs. Theoretical AG (volumetric)
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Speciation Dependent on Place in Discharge
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—Pure THF

—THF Plus P4441TFSI

Normalized Absorbance
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Electron Pair Donation (EPD) Strength Has Been a Suggested Descriptor
for Solubility

= Suggestions in the literature that LiPS solubility is related to the solvent’s Gutmann Donor Number

(DN)*.
0 This has not been explicitly quantified

Gutmann, V. Electrochimica Acta. 1976, 21, 661-670

Classic Gutmann Donicity model. A calorimetric

measurement gives a AH value for the complex
formation with SbCl..

*Rauh et al. Chem. J. Inorg. Nucl. Chem. 1977, 39, 1761-1766
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*Na chemical shift

Schmeisser et al. Chem. Eur. J. 2012, 18, 10969 — 10982

Op-23Na = -270 ppm >> 0453y, = 9.7 ppm
Og.71i = Op71i
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