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Snapshot of MV Electrolyte Development
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« Significant growth in Mg electrolyte development — expansion
of stability window
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« Growing electrolyte toolkit provides opportunity for systematic

investigation - predictive electrolyte design
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Interphases dictate the feasibility of MV metal anodes

Mg requires activation Morphology evolution:
of the anode interphase Porosity evolution in

Structure directing role: cycled Ca anodes
trace H,O impacts Mg
deposit microstructure

Design and directed formation of MV interphases is challenging - nanometric,
structurally unstable, and largely undetermined
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Outstanding Questions — New Approach

Science Question What is the role of the solvent in dictating the following:
* TFSI reactivity?
 the limits of efficiency?

« performance of WCA's?

Our approach:

Explore impact of competitive solvent and anion
complexation on efficiency.

» Treat the ether — glyme solvent series as a
continuum of energy of complexation

« Treat contact ion pairing anions as displacive ligands

« Bulk speciation — interfacial speciation - reactivity
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TFSI- as a Benchmark Weakly Coordinating Anion

TFSI provides diverse conformations and interactions

TFSI Conformational Sensitivity Predicted Stability Dependence
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The reductive stability of the solvent alone is not the
concern?

Comparable free energy barriers
for Mg*-solv reduction

TS1g;
Dual, concerted
TS2;,

.0/ / C-O dissociation
0.42
Alternating C-O

% .. -0.66 association/dissociation

143 e -1.39

AE* = AEdis(glyme) + AEin + AE;a(glynle) + AEox(Mg")

Solvenf AG* AE*| AEa«(glyme) AFEred(glyme) AEix  AEox(Mg")

Gl 054 0.68| 0091 1.63 -16.56 14.70
G2 042 055 098 1.68 -16.81 14.70
G3 0.51 058 0.77 1.56 -16.44 14.70
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Solvent-anion combination has a strong impact on activity
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lon Pairing is prominent across the ether series

Bulk Speciation is determined with Raman

0.5 M MgTFSl,:solvent degree of dissociation with ether
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* Free or solvent separated ion pairs are dominant in multidentate ethers

« Contact ion pairs and aggregates are dominant in the cyclic ethers
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How does bulk speciation translate to the interface?

Tools are necessary to probe interfacial speciation

hv >

Operando XAS 10®torr Si3N4P(t_ e_electrolyte
hv

Total electron yield (TEY) e~ out = interfacial
Total fluorescent yield (TFY) hv out = bulk electrolyte

<"
2
Electrochemical static liquid cell Li
@ 0\ g
| @o,-,«; potential dependent E.
" 4 i >
/ response of interface 3 1
) Working electrode E !
(2) Counter electrode ;_2
(3) Reference electrode 684 688

(4) X-ray membrane

soft and tender x-rays enable an interfacial compositional inventory
Cations: Mg, Ca, Zn
Ligands: B, CI, C, O, F
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Unique speciation exists at the interface

0.5 M MgTFSI,:solv Au working electrode at open circuit potential

Bulk Electrolyte (TFY) Interface (TEY)
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x > 7
i
E. E ;
2 2.

685 885

Modest change across IP range 3+ distinct bands — vary across IP range
95 -10% DME - variation within IP range

The interface is a unique environment for reconfiguration of the M-TFSI-solv
coordination complex
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Probable structures determined using computational
spectral simulation

First-principles electronic structure simulation and interpretation of F K-edge XAS
Informed by AIMD for stable TFSI- conformation

Mg(TFSI),
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Gas phase simulations to start » account for metal electrode
* incorporate solvent as a ligand » charge screening of solvent
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Unique interfacial speciation correlates with reactivity

Bulk electrolyte spectra are unchanged with cathodic polarization
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Interfacial speciation changes correlate with parasitic

reactions

Irreversible redox is observed well below the Mg nucleation potential
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Computation confirms ZnTFSI(G2)° stability

C-S bond dissociation free energies C-S cleavage transition states
BAGt HEAG
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Interfacial speciation of ZnTFSI, as a control

Similar absorption features for

0.5 M ZnTFSI,:2-MeTHF MgTFSI2 in 2MeTHF and G1
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Minor interfacial changes due to reduced parasitic reactivity at higher
ZnTFSI(solv)° stability potential E(Mg®?*) — E(Zn%2*)

Zn-Au alloying is impaired in 2MeTHF
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Reduced TFSI Decomposition with Displacement

Interphase composition should yield less TFSI products with THF - G2
Locallzed deposﬂ — fllmed substrate Locallzed deposﬂ - flbrous morphology

Locallzed deposﬂ —dense platelets

Mg F o) c S
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25Mg Chemical Shift (ppm)

Demonstration of Solvent Controlled lon Separation

Add a stronger coordinating solvent to a highly ion associated electrolyte

G2 addition to THF at select G2:Mg?* molar ratios while maintaining Mg?* at 0.5M
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G2 up to 17 mol% vyields descriptors consistent with a glyme electrolyte

Mg deposition is greatly enhanced

Generalized strategy for regulating reactivity
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Key Lessons

* Interfacial speciation is probed in the MgTFSI,:solv system using EC-
XAS

» Interface is a unique environment aiding in creation of reactive
complexes

* These are prescribed by and regulated by bulk speciation
« But are unique to the interface

» Directed formation of stable, functional interphases requires this
knowledge
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