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lonomers are “designer” conductive polymers

lonomer chemical structures for various Atomistic simulation of dense melt, showing Dark-field STEM and SAXS (inset) of charged
precise spacings (Bolintineanu 201 3) charged species only (Bolintineanu 201 3) species (Middleton 2017, Trigg 2017)

Polymers with (evenly-)spaced charged-groups—can drive formation of ion aggregates in melts

Conductivity plus durability makes ionomers candidate battery materials

Bolintineanu, et al. ACS Macro Lett., 2, 2013
Middleton, Winey. Annu. Rev. Chem. Bio. Eng., 8, 2017
Trigg, et. al. ACS Macro Lett., 6, 2017
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Identify polymer architectures that promote rapid ion transport
Goals Connect transport mechanisms to underlying aggregation structure
L Coarse-grained model to simulate morphology and dynamics
Bolintineanu, et al. ACS Macro Lett., 2, 2013

Middleton, Winey. Annu. Rev. Chem. Bio. Eng., 8, 2017
Trigg, et. al. ACS Macro Lett., 6, 2017




Charged species aggregate due to competing interactions

short-range aftraction

strong electrostatic contact energy
drives aggregation

Bolintineanu, et al. ACS Macro Lett., 2, 2013.




Charged species aggregate due to competing interactions

short-range attraction steric repulsion
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strong electrostatic contact energy polymer backbone packing

drives aggregation halts aggregation

Bolintineanu, et al. ACS Macro Lett., 2, 2013.




Charged species aggregate due to competing interactions

short-range attraction steric repulsion

Balancing these interactions drives formation of charged-species
morphologies with finite characteristic sizes

Bolintineanu, et al. ACS Macro Lett., 2, 2013.




Coarse-grained model for ionomer melts

Fully-flexible backbone (Kremer-Grest model)
Purely repulsive beads, size = 10 — each maps to 3 to 4 CH,, units

Hall, et. al. PRL, 106, 201 1; Hall, et. al. JACS, 134, 2012; Hall, et. al. Macromolecules, 45, 201 2.
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Coarse-grained model for ionomer melts

Fully-flexible backbone (Kremer-Grest model)
Purely repulsive beads, size = 10 — each maps to 3 to 4 CH,, units

Precisely-spaced pendant anionic groups (z=-1)
Purely-repulsive beads plus charge, size = 10 — maps to COO~

Fully neutralized by cationic counterions (z=+1)
Purely-repulsive beads plus charge, size = 0.50 — maps to Na+

Dense disordered melts of 800 polymers
Molecular dynamics (Langevin thermostat) via LAMMPS

Hall, et. al. PRL, 106, 201 1; Hall, et. al. JACS, 134, 2012; Hall, et. al. Macromolecules, 45, 201 2.




1) Dependence of counterion dynamics on polymer architecture?

10-2

Counterion D (62/7)
o

o
I

103

0.0

0.2 0.4 0.6
mol frac. ions (CB+Cl)

0.8

p1 polymer (“polyll”’)

From large spacer lengths to the “polymeric ionic liquid” limit—
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2) Does morphology determine counterion dynamics?
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2) Does morphology determine counterion dynamics?
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2) Does morphology determine counterion dynamics?
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3) Physical mechanism(s) by which counterion diffusion occurs?

Counterion stepping along network “highways” and between cluster “islands”

Mogurampelly, et al. JACS Comm., 139, 2017.




3) Physical mechanism(s) by which counterion diffusion occurs?

< # ion-pairs preserved thru At >

Frac. preserved ion-pairs S(At) =
. . (a0 < # ion-pairs >

Counterion stepping along network “highways” and between cluster “islands”

quantified by relative preservation of ion-pair bonds over time

Mogurampelly, et al. JACS Comm., 139, 2017.
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Mogurampelly, et al. JACS Comm., 139, 2017.
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3) Physical mechanism(s) by which counterion diffusion occurs?
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Concluding remarks

- Described coarse-grained model for ionomer melts showing charge aggregation, suitable for
examining wide range of diffusive dynamics

- Counterion transport spans two distinct regimes as a function of networked versus clustered
morphology of ions, where networks exhibit counterion stepping mechanism

- Currently validating best practices for quantifying “‘cluster lifetimes’ (merge-exchange timescales)
for dynamically clustered systems (relatively ideal test set)

Bolintineanu, et al. ACS Macro Lett., 2, 2013
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Controllable synthesis parameters in experiments

— average backbone spacer length (no. of carbons)

p/np/r = charged-group integration: precise, nearly-precise, random

Na+ — counterion species: Na,Li,Zn,Cs

%Na = neutralization level: 20,30,40,50...100%




Controllable synthesis parameters in experiments

— average backbone spacer length (no. of carbons)
p/np/r = charged-group integration: precise,
Na+ — counterion species: Na

%Na = neutralization level: 100%




3) Physical mechanism(s) by which counterion diffusion occurs?

o -

Counterion diffusion via merge-exchange events between clusters—

““cluster lifetimes’ more salient than bond lifetimes?
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3) Physical mechanism(s) by which counterion diffusion occurs?
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3) Physical mechanism(s) by which counterion diffusion occurs?
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Characteristic stepping timescale predicts ion transport in networks—

scales incorrectly for clusters (insufficient measure of connectivity?)
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