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lonomers are "designer" conductive polymers

lonomer chemical structures for various

precise spacings (Bolintineanu 2013)

2 nm

Atomistic simulation of dense melt, showing

charged species only (Bolintineanu 2013)

Dark-field STEM and SAXS (inset) of charged

species (Middleton 2017, Trigg 2017)

Polymers with (evenly-)spaced charged-groups—can drive formation of ion aggregates in melts

Conductivity plus durability makes ionomers candidate battery materials

Bolintineanu, et al. ACS Macro Lett., 2, 2013

Middleton, Winey. Annu. Rev. Chem. Bio. Eng., 8, 2017

Trigg, et. al. ACS Macro Lett., 6, 2017
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Identify polymer architectures that promote rapid ion transport

Goals Conneci transport mechanisms to underlying aggregation structure

4 Coarse-grained model to simulate morphology and dynamics

Bolintineanu, et al. ACS Macro Lett., 2, 2013

Middleton, Winey. Annu. Rev. Chem. Bio. Eng., 8, 2017

Trigg, et. al. ACS Macro Lett., 6, 2017



Charged species aggregate due to competing interactions

short-range attraction

strong electrostatic contact energy

drives aggregation

Bolintineanu, et al. ACS Macro Lett., 2, 2013.
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Bolintineanu, et al. ACS Macro Lett., 2, 2013.



Charged species aggregate due to competing interactions

short-range attraction

G H 400 O

steric repulsion

Balancina these interactions drives formation of charged-species

morphologies with finite characteristic sizes

Bolintineanu, et al. ACS Macro Lett., 2, 2013.



Coarse-grained model for ionomer melts

• • •

Fully-flexible backbone (Kremer-Grest model)
Purely repulsive beads, size E 1 a - each maps to 3 to 4 CH2 units

Hall, et. al. PRL, 106, 201 1; Hall, et. al. JACS, 134, 2012; Hall, et. al. Macromolecules, 45, 2012.
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Coarse-grained model for ionomer melts

• • •

pac°°°F0 0

• • •

Fully-flexible backbone (Kremer-Grest model)
Purely repulsive beads, size E 1 CY — each maps to 3 to 4 CH2 units

Precisely-spaced pendant anionic groups (z -1)
Purely-repulsive beads plus charge, size E 1 CY — maps to C00-

Fully neutralized by cationic counterions (z +1)
Purely-repulsive beads plus charge, size E 0.5 CY — maps to Na+

Dense disordered melts of 800 polymers
Molecular dynamics (Langevin thermostat) via LAMMPS

Hall, et. al. PRL, 106, 201 1; Hall, et. al. JACS, 134, 2012; Hall, et. al. Macromolecules, 45, 2012.
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2) Does morphology determine counterion dynamics?
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2) Does morphology determine counterion dynamics?
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3) Physical mechanism(s) by which counterion diffusion occurs?

Counterion stepping along network "highways" and between cluster "islands"

Mogurampelly, et al. JACS Comm., 139, 2017.
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Frac. preserved ion-pairs S(At) =
< # ion-pairs preserved thru At >

< # ion-pairs >

Counterion stepping along network "highways" and between cluster "islands"

quantified by relative preservation of ion-puir bonds over time
Mogurampelly, et al. JACS Comm., 139, 2017.
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3) Physical mechanism(s) by which counterion diffusion occurs?
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Concluding remarks

- Described coarse-grained model for ionomer melts showing charge aggregation, suitable for

examining wide range of diffusive dynamics

- Counterion transport spans two distinct regimer as a function of networked versus clustered

morphology of ions, where networks exhibit counterion stepping mechanism

- Currently validating best practices for quantifying "cluster lifetimes" (merge-exchange timescales)

for dynamically clustered systems (relatively ideal test set)

Bolintineanu, et al. ACS Macro Lett., 2, 2013
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Controllable synthesis parameters in experiments

pX average backbone spacer length (no. of carbons)
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3) Physical mechanism(s) by which counterion diffusion occurs?
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3) Physical mechanism(s) by which counterion diffusion occurs?
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3) Physical mechanism(s) by which counterion diffusion occurs?
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