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Microtubules are uniquely responsive biopolymers

High aspect-ratio fibers (d-25nm, L-1 Oum) that self-assemble from tubulin in
eukaryotic cells

Critical for cell function: cytoskeletal structure, mitosis, tracks for motor-proteins

Duality: microtubules are highly stiff, yet can catastrophically unpeel

Dyed microtubules in epithelial

cells. Zanic group, Vanderbilt

School of Medicine
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High aspect-ratio fibers (d-25nm, L-1 Oum) that self-assemble from tubulin in
eukaryotic cells

Critical for cell function: cytoskeletal structure, mitosis, tracks for motor-proteins

Duality: microtubules are highly stiff, yet can catastrophically unpeel

Goals 

Develop minimal model for microtubule behavior (capture duality)

Validate "design rules" for building blocks with active (dis)assembly

Toward synthetic reconfigurable fiber/gel/film systems



afl-tubulin and microtubule dynamic instability

4 nm

High-res (-8 A) Cryo-EM

reconstruction (Alushin)

Active binding site for GTP or GDP,

which are exchangeable

Alushin, et al. Cell, 157, 2014
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al3-tubulin and microtubule dynamic imtability
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Phosphorylation/hydrolysis-driven cycle of microtubules
Alushin, et al. Cell, 157, 2014
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Is depolymerization driven by tubulin shape change?
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reconstruction

Alushin, et al. Cell, 157, 2014

Zhang, et al. Cell,162, 2015
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Is depolymerization driven by tubulin shape change?

Lumen

High-res (-8 A) Cryo-EM

reconstrudion

)6'

Structure before/after

hydrolysis
Net rearrangement

Lattice hydrolysis associated with a-subunit compression
Alushin, et al. Cell, 157, 2014

Zhang, et al. Cell,162, 2015



Is depolymerization driven by tubulin shalae change?

4 nm

Polymerization of
GTP-tubulin

GDP
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ca,

8
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in solution

Catastrophic
depolymerization

Hydrolysis of MT
GTP- to GDP-tubulin

Shape
(-3‘ ,s change?

Filament stress

/
Loss of GTP-tubulin "cap"

(stochastic)

Hypothesis: modest shape changt drives depolymerization
Alushin, et al. Cell, 157, 2014
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Minimal model for tubulin dimer

Symmetric subunits

Rigid wedge-shaped subunits
Simplest hollow-tube building block; angled for ring of 1 3 protofilaments
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a
—>

Lumen
Side view

Bollinger and Stevens, Soft Matter, 2018.



Minimal model for tubulin dimer

Symmetric subunits

Compressed a-subunit

a

—>
Lumen

Side view

Rigid wedge-shaped subunits
Simplest hollow-tube building block; angled for ring of 1 3 protofilaments

3x3x3 repulsive beads (12-6 LJ cut/shifted)
Subunit excluded volume, all size E 1 0-, equal mass

4

4E 1a)
0
in_

0

\
i‘
I I
i I
i I
i I

1 .0ci 1 .1 20-

pair distance r (a)

Bollinger and Stevens, Soft Matter, 2018.



Minimal model for tubulin dimer

Symmetric subunits
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3x3x3 repulsive beads (12-6 LJ cut/shifted)
Subunit excluded volume, all size E 1 0-, equal mass

4 pairs attractive-well beads (cosine form)
Side-specific, vertically offset across subunit, enforces orientation/chirality
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Minimal model for tubulin dimer

Symmetric subunits

Compressed a-subunit

—>
Lumen

Rigid wedge-shaped subunits
Simplest hollow-tube building block; angled for ring of 1 3 protofilaments

3x3x3 repulsive beads (12-6 LJ cut/shifted)
Subunit excluded volume, all size E 1 at equal mass

4 pairs attractive-well beads (cosine form)
Side-specific, vertically offset across subunit, enforces orientation/chirality

Compression of a-subunit (angle 0)
Rearrangement due to MT dephosphorylation

Bollinger and Stevens, Soft Matter, 2018.



Minimal model for tubulin dimer

Symmetric subunits

Compressed a-subunit

—>
Lumen

Side view

Relevant parameter space:

A L Lateral attraction strength (2x per bead)

A v Vertical attraction strength (2x per bead)

0 Compression angle (fixec at 15°, reflects deformation in cyro-EM)

rcut Attraction lengthscale rixec at 0.56, reflects binding region size)

Bollinger and Stevens, Soft Matter, 2018.



Simulations of coarse-grained microtubules

Capped GDP-MT
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Relevant parameter space:

A 1 Lateral attraction strength (2x per bead)

A v Vertical attraction strength (2x per bead)

Compression angle ( , at 15°, reflects deformation in cyro-EM)

rcut Attraction lengthscale -I at 0.56, reflects binding region size)

Simulation protocols:

Observe dynamics of single MT! (Ceff--1 00 uM)

Molecular dynamics via LAMMPS with Langevin thermostat

Bollinger and Stevens, Soft Matter, 2018.



1. Can shape frustration drive catastrophic depolymerization?

GTP-rich
cap region

Capped GDP-MT
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2. Consistent with stability for non-hydrolyzed caps and lattice regions?
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3. Physically-plausible model tubule properties, e.g., mechanics?

Comparison of experiments to model MTs at AL=2.2,Av=3.2 kBT, L-400um

Property
Experiments

(w/ Taxol)

Model

GTP-MT

Persistence length Lp (um) '600 (L < 400um) 530

Young's modulus E (MPa) 100 to 2000 270

Shear modulus G (MPa) 1.4 to 48.0 44

Model GTP-MT persistence length and axial/shear stiffness

in line with experimental estimates for stabilized MTs

Kis, et. al., PRL, 89, 2002; Taute, et. al. PRL, 100, 2008; Sept and MacKintosh, PRL, 104, 2010

Bollinger and Stevens, Soft Matter, 2018.



3. Physically-plausible model tubule properties, e.g., mechanics?

Comparison of experiments to model MTs at AL=2.2,Av=3.2 kBT, L-400um

Property
Experiments

(w/ Taxol)
Model

GTP-MT

Capped

GDP-MT

Persistence length Lp (um) '600 (L< 400um) 530 290

Young's modulus E (MPa) 100 to 2000 270 131

Shear modulus G (MPa) 1.4 to 48.0 44 36

Shape change increases model MT flexibility

collective result of subunit raffling due to bond frustration

Kis, et. al., PRL, 89, 2002; Taute, et. al. PRL, 100, 2008; Sept and MacKintosh, PRL, 104, 2010

Bollinger and Stevens, Soft Matter, 2018.



Concluding remarks

- New minimal model for tubulin/microtubules demonstrates how modest shape frustration

can drive microtubule depolymerization

- Model microtubules exhibit mechanical responses in line with experimental estimates

- Coarse-grained model suitable for ongoing simulation investigations of microtubule

nucleation and growth pathways
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