This paper describes objective technical results and analysis. Any subjective views or opinions that might be expressed

in the paper do not necessarily represent the views of the U.S. Department of Energy or the United States Government.

SAND2019- 14533C

U.S. DEPARTMENT OF

'ENERGY

Office of Science

Molecular Simulations Show Catastrophic Depolymerization of
Microtubules Driven by Subunit Shape Change

Jonathan A. Bollinger (jbollin@sandia.gov) and Mark J. Stevens (msteve@sandia.gov)
Center for Integrated Nanotechnologies, Sandia National Laboratories, Alouguerque NM 87185 USA

Model depolymerization resembles experiments
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