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Microtubules are uniquely responsive biopolymers

High aspect-ratio, highly-stiff fibers that self-assemble in eukaryotic cells and
display remarkable growth—depolymerization behaviors

Critical for cell function: cytoskeletal structure, mitosis, tracks for motor-proteins

Inspiration for synthetic and hybrid reconfigurable/active fiber materials

Dyed microtubules in epithelial
cells. Zanic group, Vanderbilt
School of Medicine




Microtubules are uniquely responsive biopolymers

Goal: Large-scale molecular simulations of validated tubulin/MT model
to reveal how tubulin shape modulates depolymerization / ““rescue”

Dyed microtubules in epithelial
cells. Zanic group, Vanderbilt
School of Medicine




a-tubulin and microtubule dynamic instability

Active binding site for GTP or GDP,
which are exchangeable

High-res (~8 A) Cryo-EM
reconstruction (Alushin)

Alushin, et al. Cell, 157, 2014 2




as-tubulin and microtubule dynamic instability
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Bollinger and Stevens, Soft Matter, 2018. 2




as-tubulin and microtubule dynamic instability

4 nm

Alushin, et al. Cell, 157, 2014

Bollinger and Stevens, Soft Matter, 2018.
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as-tubulin and microtubule dynamic instability

Polymerlzq'rlon of Hydrolysis of MT
GTP-tubulin GTP- to GDP-tubulin
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depolymerization
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Phosphorylation /hydrolysis-driven cycle of growth/depolymerization

Alushin, et al. Cell, 157, 2014
Bollinger and Stevens, Soft Matter, 2018. 2




Is depolymerization driven by tubulin shape change?

High-res (~8 A) Cryo-EM Structure before /after
reconstruction hydrolysis

Alushin, et al. Cell, 157, 2014
Zhang, et al. Cell, 162, 2015 3




Is depolymerization driven by tubulin shape change?

Net rearrangement

Lattice hydrolysis associated with a-subunit compression

Alushin, et al. Cell, 157, 2014
Zhang, et al. Cell, 162, 2015 3




Is depolymerization driven by tubulin shape change?

Polymerization of Hydrolysis of MT
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Minimal model for tubulin dimer

Symmetric subunits

Rigid wedge-shaped subunits
Simplest hollow-tube building block; angled for ring of 13 protofilaments

Side view

Bollinger and Stevens, Soft Matter, 2018. 5




Minimal model for tubulin dimer

Symmetric subunits

3x3x3 repulsive beads (12-6 LJ cut/shifted)

Subunit excluded volume, all size = 10, equal mass

a ¢
—
Lumen

Side view

Bollinger and Stevens, Soft Matter, 2018. 5




Minimal model for tubulin dimer

Symmetric subunits

4 pairs aftractive-well beads (vertical vs. lateral)
Side-specific, vertically offset across subunit, enforces orientation /chirality

Side view

Bollinger and Stevens, Soft Matter, 2018. 5




Minimal model for tubulin dimer

Symmetric subunits

Compression of a-subunit (angle 0)
Rearrangement due to MT dephosphorylation

Bollinger and Stevens, Soft Matter, 2018. 5




Minimal model for tubulin dimer

Symmetric subunits

4

Side view

Bollinger and Stevens, Soft Matter, 2018.

Relevant parameter space:

A | Lateral attraction strength (2x per bead)
A\ Vertical attraction strength (2x per bead)
0 Compression angle (fixed at 15°, reflects deformation in cyro-EM)

Attraction lengthscale (fixed at 0.50, reflects binding region size)




Simulations of coarse-grained microtubules

Capped GDP-MT

“Blunt”
+ end

-

Up to
L~1.4 um

v

Tethered
—end

Bollinger and Stevens, Soft Matter, 2018.

Simulation protocols:

Observe dynamics of single MTs (C_;~100 uM)

Molecular dynamics via LAMMPS with Langevin thermostat




Shape frustration as a driver for stiff yet depolymerizing microtubules

Capped GDP-MT Uncapped GDP-MT

GTP-rich o
cap region e N
_ R Y R Complete
4l GTP to GDP
conversion

AR
2

Observe respective model microtubule behaviors as function of { cap, A, A,, }

Bollinger and Stevens, Soft Matter, 2018. 7




Shape frustration as a driver for stiff yet depolymerizing microtubules
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|dentified balance of shape frustration and binding energy underlying MT behaviors

Chretien, et al. J. Cell Bio., 129, 1995; Bollinger and Stevens, Soft Matter, 2018. 7
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Can regions of unfrustrated dimers interrupt depolymerization?

r2p6 interruption region
(2 rows, 6 / row)

At=0.0x10¢

Uncapped GDP-MT with mid-lattice ‘‘interruption region’ containing unfrustrated dimers
9




Can regions of unfrustrated dimers interrupt depolymerization?

r2p6 interruption region
(2 rows, 6 / row)

At=0.0x10°® 0.4 0.8

(1) Depolymerization of uncapped GDP-MT reaches steady-state rate




Can regions of unfrustrated dimers interrupt depolymerization?

r2p6 interruption region
(2 rows, 6 / row)
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(2) Depolymerization is interrupted by region containing unfrustrated dimers




Can regions of unfrustrated dimers interrupt depolymerization?

r2p6 interruption region
(2 rows, 6 / row)
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(3) Depolymerization eventually continues in absence of additional “GTP” refuel




Quantifying interruption time scales from MT length versus time
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Quantifying interruption time scales from MT length versus time
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Quantifying interruption time scales from MT length versus time
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Interruption times (predictably) depend on remnant size & composition
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Interruption times (predictably) depend on remnant size & composition

Normalized interruption time At , / Afrow
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Interruption times (predictably) depend on remnant size & composition
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Interruption times grow exponentially for 2- or 4-row regions above 30% unfrustrated
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Interruption times (predictably) depend on remnant size & composition
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Small patchy regions (e.g., <30 dimers) stabilize comparable to unperturbed end cap
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Concluding remarks

- Described recent minimal model for tubulin/microtubules that demonstrates how modest shape
frustration can drive microtubule depolymerization

- Consistent with experimental picture of "GTP-remnants” as rescue locations, small randomly-
initialized regions containing unfrustrated model dimers can interrupt depolymerization

- Notably, significant interruption can result from as few as 20 unfrustrated dimers, suggesting that
MT depolymerization is very sensitive to incomplete hydrolysis

12
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