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Microtubules are uniquely responsive biopolymers

High aspect-ratio, highly-stiff fibers that self-assemble in eukaryotic cells and
display remarkable growfirdepolymerization behaviors

Critical for cell fundion cytoskeletal structure, mitosis, tracks for motor-proteins

Inspiration for synthetic and hybrid reconfigurable/adive fiber materials

Dyed microtubules in epithelial

cells. Zanic group, Vanderbilt

School of Medicine
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Microtubules are uniquely responsive biopolymers

Dyed microtubules in epithelial

cells. Zanic group, Vanderbilt

School of Medicine

High asped-ratio, highly-stiff fibers that self-assemble in eukaryotic cells and
display remarkable growth—depolymerization behaviors

Critical for cell fundion: cytoskeletal structure, mitosis, tracks for motor-proteins

Inspiration for synthetic and hybrid reconfigurable/adive fiber materials

Goal: Large-scale molecular simulations of validated tubulin/MT model

to reveal how lUbUlin Shape modulates depoiymenzution / "rescue"
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afl-tubulin and microtubule dynamic instability

4 nm

High-res (-8 A) Cryo-EM

reconstruction (Alushin)

Alushin, et al. Cell, 157, 2014

Active binding site for GTP or GDP,

which are exchangeable
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al3-tubulin and microtubule dynamic imtability
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Alushin, et al. Cell, 157, 2014

Bollinger and Stevens, Soft Matter, 2018.

GTP-tubulin "cap" at
leading plus end
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Hydrolysis of MT
GTP- to GDP-tubulin
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afl-tubulin and microtubule dynamic instability
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Is depolymerization driven by tubulin shape change?

High-res (-8 A) Cryo-EM

reconstruction

Alushin, et al. Cell, 157, 2014

Zhang, et al. Cell,162, 2015
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Is depolymerization driven by tubulin shape change?
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Net rearrangement

Lattice hydrolysis associated with a-subunit compression
Alushin, et al. Cell, 157, 2014

Zhang, et al. Cell,162, 2015 3



Is depolymerization driven by tubulin shalae change?
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Minimal model for tubulin dimer

Symmetric subunits

Rigid wedge-shaped subunits
Simplest hollow-tube building block; angled for ring of 1 3 protofilaments

Compressed a-subunit

a
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Minimal model for tubulin dimer

Symmetric subunits

Rigid wedge-shaped subunits
Simplest hollow-tube building block; angled for ring of 1 3 protofilaments

3x3x3 repulsive beads (12-6 LJ cut/shifted)
Subunit excluded volume, all size E 1 al equal mass

Compressed a-subunit
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Minimal model for tubulin dimer

Symmetric subunits

Compressed a-subunit

C. 4oSlig44
e • R‘

Lumen
Side view

Bollinger and Stevens, Soft Matter, 2018.

Rigid wedge-shaped subunits
Simplest hollow-tube building block; angled for ring of 1 3 protofilaments

3x3x3 repulsive beads (12-6 LJ cut/shifted)
Subunit excluded volume, all size E 1 at equal mass

4 pairs attractive-well beads (vertical vs. lateral)
Side-specific, vertically offset across subunit, enforces orientation/chirality
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Minimal model for tubulin dimer

Symmetric subunits

Compressed a-subunit

—>
Lumen

Bollinger and Stevens, Soft Matter, 2018.

Rigid wedge-shaped subunits
Simplest hollow-tube building block; angled for ring of 1 3 protofilaments

3x3x3 repulsive beads (12-6 LJ cut/shifted)
Subunit excluded volume, all size E 1 at equal mass

4 pairs attractive-well beads (vertical vs. lateral)
Side-specific, vertically offset across subunit, enforces orientation/chirality

Compression of a-subunit (angle 0)
Rearrangement due to MT dephosphorylation
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Minimal model for tubulin dimer

Symmetric subunits

Compressed a-subunit

—>
Lumen

Side view

Bollinger and Stevens, Soft Matter, 2018.

Relevant parameter space:

A L Lateral attraction strength (2x per bead)

A v Vertical attraction strength (2x per bead)

0 Compression angle (fixec at 15°, reflects deformation in cyro-EM)

rcut Attraction lengthscale rixec at 0.56, reflects binding region size)
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Simulations of coarse-grained microtubules

Capped GDP-MT
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Relevant parameter space:

A 1 Lateral attraction strength (2x per bead)

A v Vertical attraction strength (2x per bead)

Compression angle ( , at 15°, reflects deformation in cyro-EM)

rcut Attraction lengthscale -I at 0.56, reflects binding region size)

Simulation protocols:

Observe dynamics of single MT! (Ceff--1 00 uM)

Molecular dynamics via LAMMPS with Langevin thermostat
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Shape frustration as a driver for stiff yet depolymerizing microtubules
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cap region

Capped GDP-MT

griArgg •-ðe
• rye er
-ow. • lior

wiref.dev

iir:Werwii, .

,firg riratesit=.

uist,rn •
nrii ~MO •

41.11012....ino4
irripar.

.1111.9.10110 r pioliV

%OW. reeiblre

*OW., it`4.

-•40,01,4141 •

"rtiltirWriPW fp..01/;:

." nett,--
, —

.04

I "kJ; I, iv... 0. Orr e..
'WWI' • •• •-•. 1PV:a.

• .•••."

*611..76 
• • •

-111/1844-1P

W ;d

irefigiFAT.ne.
. •

" •

Uncapped GDP-MT

_ .., ,-
o 'arillr,Ir ,-'t

'vs igittrier12*
`ftterviiiiiP,"
t . . , .t
, A., J...- a ...L.4_,.../

_, ..eR.,

tWeitiVii .1
-1'p-A erre: '

ft "...`• OAP,'"
ittlifer ivii.

1, SrawiletA% ' i Jyr eleiP ,
iii.4"1" .4. frifil a.
ret444"_____4"1-. w,••••• _
co irwitir - 7 -(0 filk"

Complete
GTP to GDP
conversion

Observe respective model microtubule behaviors as function of { cap, AL, Av

Bollinger and Stevens, Soft Matter, 2018. 7



Shape frustration as a driver for stiff yet depolymerizing microtubules
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Can regions of non-hydrolyzed tubulin interrupt depolymerization?

GTP-tubulin "remnants" (red)

in MT lattices (Dimitrov)

Rescue Rescue

  time

Can GTP-tubulin "remnants" facilitate rescue by interrupting depolymerization?

Dimitrov, et. al., Science, 2008. 8



Can regions of unfrustrated dimers interrupt depolymerization?

r2p6 interruption region
(2 rows, 6 / row)
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Uncapped GDP-MT with mid-laftice "interruption region" containing unfrustrated dimers

9



Can regions of unfrustrated dimers interrupt depolymerization?

r2p6 interruption region
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Can regions of unfrustrated dimers interrupt depolymerization?

r2p6 interruption region
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(2) Depolymerization is interrupted by region containing unfrustrated dimers
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Can regions of un.Frustrai-ed dimers interrupt d e polyme rizaiion?

r2p6 interruption region
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Quantifying interruption time scales from MT length versus time
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Quantifying interruption time scales from MT length versus time
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Quantifying interruption time scales from MT length versus time
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Interruption times (predictably) depend on remnant size & composition

160

0
-42

<1 140
--..,

'E.,L- 120
<1

Ea) 100•-c
c
o

80
o_
D
s-

-L(1) 60
c
-a
0 40
N
• -

T3

E 20
8
z

0

0 1 2 3 4 5 6 7

No. uncompressed dimers per row

8

Individual interruption times

Average interruption time (with error)

11



Interruption times (predictably) depend on remnant size & composition

160

0
-42

<1 140
--..,

'E.,L- 120
<1

Ea) 100•-c
c
o

80
o_
D
s-

-L(1) 60
c
-a
0 40
N
• -

T3

E 20
8
z

0

0 1 2 3 4 5 6 7

No. uncompressed dimers per row

8

Individual interruption times

Average interruption time (with error)

11



Interruption times (predictably) depend on remnant size & composition
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Interruption times (predictably) depend on remnant size & composition
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Concluding remarks

Described recent minimal model for tubulin/microtubules that demonstrates how modest shape
frustration can drive microtubule depolymerization

- Consistent with experimental picture of "GTP-remnants" as rescue locations, small randomly-
initialized regions containing unfrustrated model dimers can interrupt depolymerization

- Notably, significant interruption can result from as few as 20 unfrustrated dimers, suggesting that

MT depolymerization is very sensitive to incomplete hydrolysis
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