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2 Introduction - High Entropy Oxide

Rock salt

Perovskite

Fluorite

Spinel CrS12-type

Half Heusler

Zinc blende

Structural Diversity of High Entropy Ceramics

Zhang, R-.Z.; Reece, M.J. J. Mater. Chem. A. 2019, 7, 22148.
Sarkar, A. et al. Adv. Mater. 2019, 1806236.
Zhai, S. et al. Energy Environ. Sc. 2018, 11, 2172.
Djenadic, R. et al. Mater. Res. Lett. 2017, 5, 102.
Gild, J. et al. J. Eur. Ceram. Soc. 2018, 38, 3578.
Rost, C.M. et al. Nat. Comm. 2015, 6, 8485.

High Entropy Oxide (HEO)
• Single-phase multi-cation oxide stabilized by

configurational entropy
• High configurational entropy due to

randomly distributed elements on same
lattice site

• Engineer chemical and defect structure of
oxides

Previous reported applications
Rock salt-based HEO (Mg,Co,Ni,Cu,Zn)0
- Li-storage capability
- Catalytic CO oxidation
Polycation oxides (PCO) (Mg,Fe,Co,Ni)Ox
- High-temperature water splitting



3 Different Catalytic and Surface-Mediated Processes

Carbon Monoxide Oxidation

CO CO2
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Operated below 700 °C

• Ce02 studied heavily for both
reactions

• Explore these reactions with high
entropy oxide with fluorite structure

(Ce0.2La0.2Pr0.2Sm Y0.2 0. 102/ - 2

Solar Thermochemical Hydrogen Production

1200-1500 °C

MO), MO),_6

Vo- 000

H2 H20

https://energy.sandia.gov/energy/renewable-energy/solar-energy/csp-2/nsttf/ 



4 Synthesis of (Ce,La,Pr,Sm,Y)02 High Entropy Oxide

Reacting stoichiometric amount of Ce02, La203, Y203, Pr6011, Sm203 at 1500 °C in air
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fluorite phase (M02)
bixbyite phase (M203)
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Fluorite Structure (Ce02) Bixbyite Structure (Ce203)

Bixbyite: comparable to 2x2x2 fluorite
supercell with oxygen removed

• XRD pattern reveals mainly fluorite phase with bixbyite phase.
• Bixbyite phase was still present even after heating at 1500 °C under 02



5 SEM/EDS of (Ce,La,Pr,Sm,Y)02

Homogeneous distribution of the metal cations was observed under EDS mapping in SEM.

SEM/EDS Mapping



6 I Oxygen Defects on (Ce,La,Pr,Sm,Y)02 High Entropy Oxide
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HEO reduced at 1450 °C under Ar
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After heating sample at 1450 °C under Ar,
• Lattice expanded by -0.04 A
• Fluorite phase converted to bixbyite phase

• Oxygen deficient phase can be utilized in
different catalytic reactions.

• Possible to prepare different oxygen
deficient phases by heating and quenching
at different temperatures.



7 Low-Temperature CO Oxidation Catalytic Performance
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CO Oxidation with lwt% Pt deposited
• High conversion efficiency at -250 °C
• After reduction at 275 °C, no change in

catalyst performance observed.

• Pt is either stable on the surface of the
support, or stable in the lattice

• High redox stability is promising for high
temperature catalytic reactions.

Dr. Andrew De La Riva
University of New Mexico



8 Oxygen Redox Behavior
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TGA plot for oxygen redox behavior

1600 Exploring oxygen redox behavior of HEO
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Reduction at 1500 °C under Ar
• HEO (blue) reduces more than Ce02

(green)

Oxidation at 850 °C under air
• Similar oxidation behavior at 850 °C for

both HEO and Ce02
• Further oxidation observed for HEO while

cooling down.
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9 High-Temperature Water Splitting
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Same temperature program as before, but replacing
air with steam-N2.
While Ce02 splits water rapidly, HEO shows slow
water splitting.
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The HEO was further tested by heating to 1200 °C
under steam-N2.
Water splitting occurs more above 900 °C with slow
kinetics - phase change between fluorite and bixbyite



10 I Summary/Acknowledgement

(Ce,La,Pr,Sm,Y)02 prepared via solid state synthesis

Catalytic CO Oxidation
• Good redox stability observed for HEO with Pt deposited

• Possible support derivation by inducing oxygen vacancies

- fluorite vs. bixbyite phase

High-Temperature Water Splitting
• Greater extent of reduction for HEO than Ce02

• Slower water splitting kinetics

- Phase transition between fluorite and bixbyite structure

• Develop better understanding on temperature-dependent

phase change
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