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Agenda

Objectives
Development of a scalable 2.0-MWth CSP system using a ternary chloride salt/sodium,
with operational temperatures so —740°C.

• Characterization of a high-temperature molten salt receiver system that can operate
efficiently for reliable operation.

Overview
Gen 3 Liquid-Pathway Program

Molten Salt Technology-Approach

• System Design

• System Analysis Results

Conclusions & Future work





•

• • • •



Gen 3 Liquid-Pathway System

2.0MWth Pilot-scale CSP plant design is developed to assess
thermodynamic performance potential for operation up to

720 °C.
Molten salt system HTF/TES with sCO2 power block.

6 hours of TES with charging/discharging cycles over 2 days.
Established approaches for piping, pump, valve, and heat

exchanger design (including the receiver).

High energy and exergy efficiency of storage (direct TES)
Flexible dispatch because solar collection and power generation are
decoupled.

Recognized and accepted by industry and financiers.
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salt pump.
Image courtesy
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I Need robust, high-temperature molten salt system capable of achieving temperatures above 720°C to achieve DOE 2020 SunShot Targets.
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8 1 Design Considerations - Materials Selection
• Piping and component material selection based on project alloy selection critieria.
• Recommended alloys satisfy specifications for corrosion, cost, mechanical strength and

joinability for salt-wetted components.
• The target hot piping design fluid state is 750°C and 73 psi, and the cold piping design fluid

state is 500°C and 160 psi.

Metric Success Value Assessment Tool Metric Justification
Corrosion rate

Cost/strength at
target use
conditions

Weld strength
and corrosion
resistance

< 15 um/year

Alloy(s) recommended
for each wetted part that
minimize component and
system cost of the life of
the plant

No worse than native
alloy

Corrosion rate defined in
electrochemical or immersion
tests in the defined salt
composition and relevant
temperature.

Parametric study with System
Model(s) developed under Task
10.

Corrosion rate defined in
electrochemical or immersion
tests in the defined salt
composition and relevant
temperature.

DOE target for system corrosion based on
SunShot assumption for plant life.

Alloy selection affects CAPEX, OPEX, and
system life. A full system model is
needed to assess the long-term impacts
of different material selections.
Performance based on laboratory testing;
material costs estimated from vendors.

DOE target for system corrosion based on
SunShot assumption for plant life. Note
that no testing is funded under this
project; data most be referenced from
other work.
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91 Materials Selection
• Allowable stress values for seamless piping for each candidate from ASME code as function

of temperature.
• Most data exist for SS, C-276 and Haynes 230. No corrosion found for Inc. 617 or 740H in

MgCl2 salt
• Recommended that plant be constructed of C-276 on cold side and H230 on hot side.
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Design Considerations - Component Selection

Salt Receiver: 

• Absorbed thermal energy = 2 MWth.

• 30 psig pressure drop.

• Freeze-protection and recovery design provisions.

• SolTrace studies for day 172 @10AM (conservative)

• Single Aim Point

• Multiple Aim Points

Peak irradiance = 2810 suns

Power = 2.0 MW

-3 Hours Before Solar Noon Solar Noon +3 Hours After Solar Noon

4.25m x 1.3m Heliostat Spread 5.5m x 1.1m Heliostat Spread 4.25m x 1.3m Heliostat Spread

.P4 .02 0 02 11
.111ww.- ..111=16.

Receiver Flux Distributions on Day 172, 212 heliostats



11 1 Receiver Model
• Parametric analysis was performed for a simple tubular receiver with a single-pass design.

• Required receiver flux and efficiencies calculated for —2.56 m2 aperture area

• Performed with the NSTTF heliostat field and the 120 ft. test section of the solar tower.

Model developed with 40 single-pass tubes that were 0.5 NPS Sch. 10, constructed of an H230 material.

Assessment performed to compare receiver performance between multiple HTFs with operation up to 735 °C.

Receiver model considers a panel with N number of tubes to allow a mass flow rate and a pressure drop. Also

considers uniform heat flux, uniform flow through the tubes with grey properties approximated for the tubes.
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Receiver Results

Results indicate that as the peak flux of the receiver increases for a uniform flux distribution and tube geometry, receiver
efficiency sensitivity due to wind also increases.
Ternary chloride salt not only had the highest overall required flux values, but it had a much larger increase in required
flux between 0.125in OD and 3.125in OD.

• Liquid sodium requires a much lower flux to heat to the desired temperature, regardless of wind speed and tube diameter.
• Receiver efficiency was found to be overall higher for sodium over the ternary chloride salt by an average of 10.1% more

than the ternary chloride salt, possibly due to higher /c.d.
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131 Gen 3 Liquid-Pathway Operation

Charging Operational Modes. Pilot-
system operational modes consist of:

1. Fill of the riser, downcommer and receiver
with low-temperature ramp-up.

2. Start-up and high-temperature ramp-up of
systems and components.

3. Attemporation of Primary Heat Exchanger
(PHX).

4. Steady operation.
5. Drain-down of system high-level lines and

receiver.
6. Drain of all lower-level system lines.
7. Idle operation of cold tank and remaining

wet components.
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Gen 3 Sodium/Salt System
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151 Sodium System Design - CSIRO
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16 1 Conclusions & Future Work
• A system layout for a 2-MWth sodium/chloride molten-salt test loop is presented, including a thermodynamic system
model developed using EES to model operational states during various operational modes.

• A ternary chloride molten salt chemistry was compared to a sodium HTF with respect to required flux and
efficiencies to achieve system design criteria including cold and hot tank temperatures of 500°C and 720°C.

• Receiver efficiency was found to be overall higher for sodium over the ternary chloride salt by an average of 10.1%
more than the ternary chloride salt, possibly due to higher kond.

Materials down-selection was made for SS316 Sodium, H230 (Salt Hot-Side) and C-276 (Salt Cold-Side).

The results suggest a minimum Cv of 60 required for both cold and hot throttle recirculation valves for the
operational pump speeds between 1800 and 2400 RPM.

Future studies will include receiver flux distributions and transient operational modes.

- Future receiver model development will later consider accepting SolTrace incident beam information from the SNL
NSTTF Heliostat field with transient contributions and flux distributions in two dimensions.
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