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Project structure |

Thrust 1: Formal verification of Thrust 2: Engineered reliability of Thrust 3: Variational devices and
quantum algorithm implementations = NISQ devices classical heuristics

Goal: generate machine-assisted proofs ~ Goal: produce classical software and Goal: develop tools to explore synergies §
of circuit implementations of quantum analysis tools to make near-term devices between classical heuristics and near-
algorithmes. more reliable. term variational devices (VD).

7
Application layer
e.g., Abstract algorithms and interfaces
with classical software.

Thrust 3

Logical layer
e.g., Compilation software that translates
algorithms to quantum circuits.

Thrust 1

Hardware layer
e.g., Quantum circuit programs and
hardware-level error mitigation.

Thrust 2 POP: 2018 - 2022
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Highlight 1: Program verification using Provelt

[ Wayne Witzel, Kenny Rudinger, Deepak Kapur, et al. ]

Algorithm Theory

(What does it do? How efficiently?)
proven algorithm

By proving the validity each
step along the way, we can

Algorithm Specification
(from paper or textbook)
. proven implementation

|dealized Algorithm Implementation
(set problem size)
proven proven
l robustness

transformations
Device-Specific Implementation (satisfies hardware

be assured that complete
validation is feasible. |

constraints, optimized for the hardware)



Highlight 1: Program verification using Provelt =
Prove-It: http://pyproveit.org

= Qur open-source Python-based general-purpose theorem-proving assistant.
= Use Jupyter notebooks to render mathematical expressions via LaTeX.

Example: Ve (Vo gy, (T €{Y1,... ;) =((z=y1) V... V(z =1)))]
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= |n a proof-of-concept demonstration,! we derived the accuracy of the Quantum Phase
Estimation algorithm:

17)

0y T H T Frt A Vee(r.2t-1-2} (P () < (3- (2 + 2))) I

= (slightly tighter than textbook? bound)

u) —* U’ u)
= ...and uncovered 3 minor mistakes in the textbook? proof and improved the bound of
the probability distribution.




Highlight 2: Machine-learned circuit compilations =

[ Lukasz Cincio, Patrick Coles, et al. ]

* Compilation of algorithms into circuits typically only consider coarse- Input:
. . . .. . . . 1. Computational task
rained noise models into account (e.g., limited connectivity, dead qubits :
2. Noise model
e Recent characterization tools (e.g., gate-set tomography) yield a wealth of ' |
fine-grained error information.
. . . . . . (o Vary circuit layout )
e Can we use this information to improve circuit performance? ] pararmsters ’
Example: state overlap between two qubits via SWAP test circuit ) ]E)pti:\ize costt _
unction capturing
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Highlight 3: Improved Q. simulation with RPE

ﬂ Antonio RUSSU <<ermy %Udlﬂ@@i’ Andrew Eﬁaczew;qki; et al. ‘l Molecular H,; energy vs nuclear separation (exact and quantum hardware)

* Robust Phase Estimation (RPE) [Kimmel, N
Low, Yoder, PRA, 2015] determines the
relative phase induced by a unitary =
between two eigenvectors <

orbital
— Ep
E;

s— E2
— E3

* Corresponds to energy differences in
the context of Hamiltonian simulation - '

(i.e., molecular spectra) 3 -
~ j NI PR
- Advantages: Lo e 5 e
* Naturally robust to noise (~¥31.6%) L” 15, o o el ” :::
* Does not require controlled unitaries 5 B L e TR e e .
* Relies on preparation of superposition of . ) . ’
eigenvector pairs R -

* Heisenberg scaling Aomic spacing r A



Other work

1. Large scale QAOA coupled with large-scale classical optimization techniques

 QAOA simulations up to 30 qubits
* Seamless interface with Rapid Optimization Library (https://trilinos.org/packages/rol/)

2. Development of proxy models for variational QC
* Apply probabilistic manifold learning to learn optimization landscape
* Fewer samples from quantum co-processor
* Smooths sampling noise and generates smooth landscape for optimizers

New (classical) optimization algorithm tailored to variational QC

4. Improved classical solvers for potential inversion when performing TD-DFT
with hybrid quantum-classical methods.

5. New variational algorithm for quantum linear systems solving

6. New analog simulation method for generating, and sampling from, many-body

thermal states
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