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Abstract—Manufacturers normally buy and/or fabricate com-
munication chips using third-party suppliers, which are then
integrated into a complex hardware-software stack with a va-
riety of potential vulnerabilities. This work proposes a compact
supervisory circuit to classify the operation of a Bluetooth SoC
at low frequencies by monitoring the input power and radio
frequency (RF) output of the Bluetooth chip passed through
an envelope detector. The idea is to inexpensively fabricate an
envelope detector, power supply current monitor, and classifica-
tion algorithm on a custom low-frequency integrated circuit in a
trusted legacy technology. When the supervisory circuit detects
unexpected behavior, it can shut off power to the Bluetooth SoC.
In this preliminary work, we proto-type the supervisory circuit
using off-the-shelf components. We extract simple yet descriptive
features from the envelope of the RF output signal. Then, we train
machine learning models to classify different Bluetooth operation
profiles, including sensor, hands-free, and headset. Our results
show r-100% classification accuracy.

Index Terms—Hardware Security, Supervisory Circuit, Blue-
tooth, Machine Learning, Security, RF Power, Classifier.

I. INTRODUCTION

Due to the complexity and multi-functionality of smart
systems, most manufacturers outsource communication chips
from third-party suppliers. The integration between many
outsourced ICs has resulted in the need to add a hardware
security layer to ensure appropriate operation. For example, in
Apple's smartphones, there is a dedicated co-processor, Secure
Enclave, to handle all cryptographic operations and maintain
the integrity of data protection for the entire system [1] .

Bluetooth, like any communication protocol, has vulnera-
bilities. For instance, in 2017, Armis [2] identified a new
Bluetooth attack vector called BlueBorne that can take control
of the target device. BlueBorne attacks regular computers,
smartphones, and IoT devices. This security breach occurs
without pairing to the targeted device nor even while the
Bluetooth IC is in discovery mode. As the Bluetooth chip
is responsible for establishing connections and controlling
data flow, BlueBorne and other security breaches could attack
the Bluetooth IC without the consent of the controller chip.
Therefore, monitoring a Bluetooth chip at the hardware level
is necessary to verify expected operation.
As shown in Fig. 1, one way to monitor the chip is to

consider it as a black box which consumes and transmits
power. Thus, abnormal behavior can be detected by learning
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Fig. 1. Concept diagram of supervisory circuit. Input and output power signals
are collected to train a machine learning model. Then, the model is used in
real-time to classify modes of operation.

the normal input/output (1/0) power signatures. A second way
is to parameterize aspects of the Bluetooth connection (e.g.,
profile type, the distance between paired devices, number of
connected devices...) and compare the detected behavior to
the expected behavior based on the controller instructions.
Supervisory circuits are commonly used in detecting power
failures but are not common for security purposes [3]. For
example, PFP Cybersecurity [4] has partnered with XILINX
to detect security breaches in XILINX's devices using artificial
intelligence. Their work is focused on self-monitoring, not
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monitoring another IC, and intended for XILINX devices only.

A. Background

A profile is a layer in the Bluetooth protocol stack that
defines the behavior of the device [5]. The Bluetooth protocol
includes profiles in order to specify the type of data transmitted
by the Bluetooth module. Bluetooth profiles include informa-
tion on other profiles' dependencies and also recommended
user interface formats [5]. For connecting two devices, they
must both support the same profile. Bluetooth profiles that
must be included are determined according to the application
of the device [5]. There are a wide range of traditional profiles
which are a comprehensive group of services such as hands-
free, headset, and health device capabilities. For example, the
Heart Rate Profile combines the Heart Rate Service and the
Device Information Service [6]. The Bluetooth protocol allows
developers to build new profiles using Generic Attribute Profile
(GATT) [5]. GATT consists of different services which are a
compilation of properties and relations to other services [7].
The combination of GATT services shape the device behavior
and defines the slave (GATT client) and master (GATT server)
roles [8].

B. Proposed Supervisory Circuit

The goal is to create a supervisory circuit to detect unex-
pected operation of a complex, mixed-signal communication
System-on-Chip (SoC). We design the supervisory circuit to
operate at low frequency and low power, and to be inexpensive
computationally. This will facilitate our ability to fabricate the
supervisory circuit in an inexpensive process technology, or
integrate soft intellectual property into a more advanced SoC.
When the supervisory circuit detects a security abnormality,
the circuit can intervene and shut down the SoC. Bluetooth
is the communications standard chosen for this preliminary
work; however, we anticipate that the methods described will
be useful for monitoring other communication protocols.
The supervisory circuit design is split into several major

blocks, as shown in Fig. 2. First, the circuit that provides
and controls power is comprised of a controlled low-dropout
(LDO) voltage regulator. LDOs are widely used in portable
communications systems since they occupy small area, have
low noise, and provide good transient performance. Embedded
in the LDO is a current sensor that monitors the output current
of the LDO. External to the supervisory circuit is an RF
coupler, which splits the transmitted RF signal into a main path
and a monitored path. The monitored path passes through the
envelope detector, which lowers the frequency of the RF signal
in order to be able to sample it at frequencies much lower than
the 2.4 GHz Bluetooth signal. As such, the supervisory circuit
can be entirely implemented using low-speed technology. The
outputs of the current sensor and the envelope detector are
digitized. Finally, a digital signal processing (DSP) circuit,
or soft IP, will be used to extract the features from all
relevant signals. At run-time, the system extracts the necessary
features to feed into the Machine Learning (ML) models to
determine what operation is running on the Bluetooth IC. In
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Fig. 2. Block diagram of supervisory circuit comprised of a DSP block
to implement the classification algorithm and two monitoring circuits: a
controlled LDO with current sensor and an envelope detector.

future work, we will compare monitored behavior to expected
behavior via the Control Bus shown in Fig. 2. Details about
the implementation of the controlled LDO with current sensor
and envelope detector are found in [9].

C. Related Work

Outsourcing IC fabrication to third party manufacturers
increases the possibility of an untrusted modification to the
circuitry, i.e., a hardware Trojan, during production. Accord-
ing to [10], non-destructive, non-invasive hardware Trojan
detection techniques can be classified as either test-time or
run-time. Both of these approaches are based on comparing
test IC parameters with a golden IC model, i.e., parameters
obtained from a known Trojan-free IC. Test-time approaches
use logic testing and/or side-channel analysis to inspect the IC
before integrating it into a system. Even when combining logic
testing and side-channel analysis [11], test-time approaches are
limited, since attacks may only be triggered after deployment.
Run-time hardware Trojan detection methods monitor the chip
continuously through the addition of monitoring circuitry. Bao
et al. [12] use variations in temperature sensor readings to
detect hardware Trojans. Hasan et al. [13] use formal verifi-
cation as a framework to develop run-time hardware Trojan
detection units for digital circuits. Unlike the aforementioned
run-time hardware Trojan detection techniques, we are not
focused only on the security of digital circuits; rather, we
propose a monitoring scheme to detect hardware attacks on
a high-speed mixed-signal communication SoC.

On-chip classification of IC behavior requires relatively
simple computations. Iwase et al. [14] use a discrete Fourier
transform feature of the voltage signal. Other classifiers select
features from multiple domains [15], [16] after transforming
the signal using both wavelet and/or Fourier analysis. Some
researchers use statistical features from both time and fre-
quency domains [17]. Still others extract large numbers of
features from signals, then apply computationally-intensive
dimensionality reduction techniques [18], [19].
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Fig. 3. Preliminary laboratory setup showing the laptop, Bluetooth evaluation
board, RF splitter, envelope detection evaluation board, and oscilloscope.

In this work, we are concerned with the computational com-
plexity of the selected features and classification algorithms.
Since frequency transformations require high computational
overhead, the selected features are exclusively extracted from
the time domain Indeed, we experimented with frequency
domain features to verify that they provide more computational
complexity without any performance advantages. In addition,
we selected novel features that are computationally smart and
cheap, while achieving high classification accuracy —100%.

II. METHODOLOGY

Prior to fabricating a custom supervisory circuit IC, it was
prototyped using off-the-shelf components and an oscilloscope
in order to collect a data set adequate for training and testing
the classification algorithm. We placed small-valued series
resistors in series with supply pins to the CYW20706 [20]
Bluetooth SoC in order to monitor the supply current to the
transceiver block. In addition, the RF output of the Bluetooth
IC was passed through an RF splitter. One side of the splitter
went to an antenna for pairing with other Bluetooth devices,
while the other side was attached to an AN-2264 LMH2121
envelope detector [21]. This particular envelope detector has
an input bandwidth from 0.1 to 3 GHz which covers the
Bluetooth band. The envelope detection stage effectively low-
ers the bandwidth of the RF signal. This experimental setup
is depicted in Fig. 3. A laptop controls the Bluetooth board
via USB. The oscilloscope samples and saves the envelope-
detected RF stream and input power signal.
The Bluetooth board is programmed to act as two popular

profiles: hands-free and headset, in addition to customized
profiles using GATT services. While each profile is running,
different events occur, such as dialing, hangup, and streaming
music. The events are controlled using a graphical user inter-
face, as shown in Fig. 4, which utilizes a serial port through
USB to send commands to the Bluetooth evaluation board.
The network topology of two devices is defined. Moreover,
we collect the RF streams of each profile in both the advertis-
ing and transmitting/receiving (transceiving) states. First, the
hands-free profile RF output signal is recorded while executing
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Fig. 4. Graphical user interface of Bluetooth board in the hand-free profile.

multiple events, including dialing, answering, and hang up.
Second, the headset profile RF output signal is captured during
various events, such as streaming music, rewind, scrub, and
volume control. Lastly, a customized profile is used to simu-
late a simple embedded system connected through Bluetooth.
Basically, it notifies the Bluetooth evaluation board of a sensor
reading that controls the number of blinks of an LED.
The oscilloscope captures the RF envelope-detected signal

at a sampling frequency of 50 kHz. A processing window of
640 ms (corresponding to 32,000 samples) with one sample
advance is selected to collect as many transmitting events as
possible with a minimal computational load. Three features
are extracted from each window to train the ML models. The
first feature is the maximum signal value in the given window,
since the maximum signal value is expected to vary from one
transmitting state to the next. Changes in the maximum value
are related to the different profiles. As we are interested in the
pattern of the Bluetooth transmission, the other two features
are extracted after thresholding the envelope-detected stream
into two binary levels. In other words, the signal is 1-bit
quantized, where value 1 means the Bluetooth is transmitting,
whereas value 0 indicates no transmission. The remaining two
features extracted in each window are the total number of
1 's (or area) and the number of 0-to-1 transitions (or number
of pulses). The area is correlated to the total transmission
duration in a certain window, whereas the number of pulses
represents the density of the transmission events.

TABLE I
OBSERVATION DISTRIBUTION OF THE DATA SET.

Profile Advertising State
Observations

Transceiving State
Observations

Total

Sensor 2, 823 2, 736 5, 559
Hands-free 2, 033 159, 211 161, 244
Headset 409 107, 469 107, 878
Total 5, 265 269, 416 274, 681

The data set is constructed of 189,522 unique windows,
or, in the language of ML, observations. MATLAB is used to
train and test the models [22]. Table I shows the distribution of
the data set across the three profile types: sensor, hands-free,
and headset. At early stages of the experiment, data was only
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Fig. 5. Time-domain feature extraction process in each 640 ms window. The
Peak, or maximum, feature is extracted first. Then, after 1-bit quantization,
the Pulses feature, which is the number of 0-to-1 transitions, and the Area
feature, which is the total number of l's, are extracted.

collected for the sensor profile. Based on the scatter plot of
sensor profile data, the two classes (advertising and transceiv-
ing) were linearly separable. As such, linear techniques were
sufficient. After the other two profiles were added (hands-free
and headset), linear methods were not enough to reach high
accuracy. Thus, quadratic, cosine and cubic based algorithms
were explored. However, in order to achieve high accuracy
and prediction speed, we eventually looked to multi-region
separation methods, such as KNN and decision tree.
The entire data set of 274,681 observations is fed to several

different ML algorithms to classify the state as either adver-
tising or transceiving. As discussed earlier, the chosen models
included decision tree, K-Nearest Neighbor (KNN), support
vector machine (SVM), and quadratic discriminant analysis.
The purpose is to compare their accuracy and prediction speed.
For all classifiers, 25% holdout validation is used for testing
the models. Prediction speeds are measured on the same
computer using MATLAB.

III. RESULTS AND DISCUSSION

Table II summarizes the performance of the different ML
algorithms which are applied to classify the profile. After
training, we calculate the prediction speed and classification
accuracy. As can be seen, logistic regression is the fastest
algorithm in prediction but is less accurate than eight other
tested algorithms. Among the remaining eight algorithms,
decision tree is the most accurate model with 99.99% accuracy
and the second fastest predictor. KNN with k=1 (1-NN),
Cubic KNN and weighted KNN have similarly high prediction
accuracy, but their prediction speeds are significantly lower
than that of decision tree.

Looking simultaneously for both high accuracy and pre-
diction speed, we note that decision tree is 3.5x faster
than KNN (K=1) in prediction. Also, regarding the hardware
implementation of the models, the KNN (K=1) model needs
more storage than that of the decision tree, because KNN

TABLE II
MACHINE LEARNING MODEL COMPARISON IN TERMS OF ACCURACY AND

PREDICTION SPEED, AS MEASURED IN OBSERVATIONS PER SECOND.

Accuracy Prediction Speed (obs/sec)
Decision Tree 99.99% 890,000
KNN (K=1) 99.98% 250,000

Quadratic Discriminant 67.30% 640,000
Logistic Regression 90.10% 1,500,000

Cosine KNN 98.90% 380
Cubic KNN 99.98% 20,000

Weighted KNN 99.98% 78,000
Linear SVM 71.80% 2,700

Quadratic SVM 35.20% 46,000
Qubic SVM 30.60% 1,300,000

Gaussian SVM 99.80% 13,000

(K=1) keeps a copy of the training data in order to calculate
the Euclidean distance between the prediction point and the
nearest training set observation. The point is then classified
according to the class of the closest observation. In contrast,
the implementation of the decision tree algorithm is based on
branching, with a maximum number of branches per feature
of 100 in this case. Therefore, the computational load of the
decision tree is much less than that of KNN (K=1).

This initial proof-of-concept demonstrates high classifica-
tion accuracy for Bluetooth profiles. We note, however, that
the current classifier is limited to only three profiles in this
preliminary work: sensor, hands-free, and headset.
As the classifier is applied at the last point of the Bluetooth

physical layer, the proposed design of the supervisory circuit
can detect many security breaches in data transfer behavior.
For example, the BlueBorne attack takes control of Bluetooth
enabled devices without authorization from the user. The
transmission state classifier can detect the connection to the
attacking device, and report it to the target device. Thus, the
target device can discover that there is a connection at the
physical layer without authentication at the software layer.
Then, the target device can shut down the Bluetooth chip
through the controlled LDO.

IV. CONCLUSION

In this paper, we demonstrated the ability to monitor and
verify the operation of a Bluetooth SoC, thus preventing
unauthorized connections and/or data transmission. We used
low-frequency measurements of the envelope of the RF output
signal sampled at 50 kHz for training and testing the clas-
sifier. Moreover, three computationally-simple features were
extracted in each window, enough to achieve very high clas-
sification accuracy (-400%). These three features, as well as
the decision tree algorithm itself, require low computational
resources, which allow the DSP block of the supervisory
circuit to be implemented in small area and operate at low
speeds with low power.
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