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Abstract—Accurate device modeling is an important
prerequisite of electronic circuit design. To accurately simulate
the circuit level behavior, compact model parameters for devices
within a circuit must be calibrated to experimental electrical
measurements. Measurements performed on a series of
otherwise identical commercial off the shelf (COTS) devices
reveal a distribution in their electrical behavior due to
manufacturing process variation. Tolerance bounds are a useful
tool for bounding a percentage of a distribution, and they can be
used to characterize uncertainty in the compact model
parameter extraction. The behavior of the electrical devices is
typically captured as current as a function of voltage, with
variability across both the current and voltage axes. This paper
applies a functional data analysis approach to generate
tolerance bounds on these two types of variability separately and
proposes a novel approach for the estimation of transformed
tolerance bounds that can be used in compact model calibration.
This method is applied to simulated Zener diode data and
compared with a traditional point-wise method which only
considers variability along one dimension (i.e., current).
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I. INTRODUCTION

This Accurate device modeling is an important
prerequisite of electronic circuit design. Analog circuit
simulators based on SPICE (Simulation Program with
Integrated Circuit Emphasis) [1], [2] used in the electrical
design process support numerous canonical compact models,
i.e., models for individual devices within the design. Often in
high reliability and large-scale commercial designs, a series of
circuit level simulations are performed to bound circuit
response between well-defined tolerances to ensure
performance within the required specifications.

To achieve that end, device level calibrations must also be
well-bounded. Measurements performed on a series of
otherwise identical commercial off the shelf (COTYS) electrical
devices of the same type from the same manufacturer reveal a
distribution in their electrical behavior due to manufacturing
process variation. Using a tolerance bound to characterize this
measured distribution seems an appropriate, if not critical
approach to meet the ultimate goal of simulating bounding
circuit behavior. Tolerance bounds are confidence intervals on
quantiles of data which can be used to determine where a
certain percentage of the population fall with a given level of
confidence [3]. They provide a measure of sampling
uncertainty, i.e., uncertainty due to the finite sample size that
was used to estimate the quantile.

There are well-established statistical methodologies for
calculating tolerance bounds for scalar and multivariate data
[3]. However, electrical measurement data on a single device
is typically captured as current as a function of voltage. This
functional data - defined as data that varies continuously
across an independent variable - has two types of variability
that must be accounted for - amplitude (vertical) and phase
(horizontal).
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This paper proposes a Functional Data Analysis (FDA)
approach for establishing tolerance bounds for functional data
that account for both of these types of variability. Previously
we have reported the use of FDA method to select a nominal
device (i.e., a device that best represents the center of the
distribution) [4]. This paper expands on that work by
developing methods for estimating tolerance bounds on
device characterization data [5].

II.  FUNCTIONAL DATA ANALYSIS

We have used the tolerance bounds estimation method
proposed by Tucker et al. [5] and, in addition, transformed the
tolerance bounds on the amplitude and phase spaces back to
the original data space. The data from this additional step
provides the bounding electrical behavior to be used in
compact model calibration.

The first step in estimating tolerance bounds is to fit an
Functional Principal Components Analysis (fPCA) model that
will be used to generate functions that represent the amplitude
and phase variability in the original data. fPCA is a statistical
method for identifying the modes of variation in functional
data [6], [7]. This fPCA model requires a characterization of
the amplitude and phase variability of the data; a brief
overview of these two types of variability is given below.
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Fig. 1. Example of a Notional example of warping functional data.

A. Amplitude and phase variability

Figure la shows an example of functional data that
contains both amplitude and phase variability. The FDA
approach described in [7] provides metrics that can be used to
define both of these types of variability.

First, for amplitude variability, consider F, a set of
continuous, real-valued functions fon the domain [0,1]. Let I'
denote a set of functions y (known as diffeomorphisms) that
map from [0,1] to [0,1] and have the constraints of y(0) =0
and y(1) = 1. The set I are called the warping functions shown
in Fig. 1(b), that are used to align the functional data along the
x axis. Aligned functions, f*, shown in Fig. 1(c), are produced
from the composition of f with y, that is f{y), denoted f2ly.
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Note that while F is defined on [0,1], this domain can be
generalized to any interval on the real line.

A metric that gives the amplitude distance for two
functions f1and f2is defined as

do(fu f2) = infllas = (a2 BYVI (1)
Here, q(t) is known as the square-root slope function

(SRSF), as q(t) = sgn(f (1)) Hf(t)|), Wheref is the time

derivative of f. f{t) is transformed to q(t) because the SRSFs
are able to form a distance metric that is symmetric, positive
definite, and satisfies the triangle inequality. More
information on SRSFs are provide in [8] and [9], while details
on solving Equation 1 and estimating the warping functions
y are given in [7].

For phase variability, a second metric is defined as

1
dp(71,72) = dy (31, 1h2) = cos ™ < wl(t)le(t)dt) (2)
0

where 1 =y, and ¢ € WP. This transformation on the warping
functions is performed to simplify the geometry of I' (an
infinite dimensional nonlinear manifold) to a unit Hilbert
sphere. To further simplify the geometry to aid in the
computation of statistics, ¥ is then mapped to a tangent space:

Ty(0) = fv € 17| /O wopa=0y

This mapping results in a shooting vector (tangent space
vector), v, that can be used to characterize the phase
variability. For more details, please see [7] and [5].

These representations of amplitude and phase variability
respective SRSFs (g) and the tangent space vectors (v) - will
be used in the fPCA model discussed in the next section.

B. fPCA Model

To estimate tolerance bounds, an fPCA model is fit and
used to sample new functions that represent the amplitude and
phase variabilities. As suggested in [5], the model starts with
a joint, piecewise representation of the amplitude and phase

functions:
o @)
g = {Cv(t— 1)
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In Equation 4, g* are the SRSFs of the aligned functions f,
which isolate the amplitude variability, v are the tangent space
vectors, which isolate the phase variability, and C is a scaling

factor [10]. Given a sample of n functionsgfa < 9n

: nC = [ ¢ : ;
with sample meanstg = [g Hey ], the covariance matrix can
be defined as:
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where T is the number of points in g* and v. Singular Value
Decomposition can then be used on this covariance matrix to

. . ¢; = (g¢,UC,) .
estimate the principal components™’ 9i>Yg.5/, where i is
the function and j is the principal direction. Now let ¢ =
(c1,-.,ck) be the k largest principal coefficients, where k is a

user-specified parameter. By allowing c to vary according to
a probability model, the fPCA model can be used to generate
a distribution of functions. In this case, c¢ is chosen to be
distributed as a multivariate Normal distribution, with 0 mean
and k x k covariance matrix X, defined as:

C(1) = q (1)
g {(‘1'(1‘—1)

where 0"iCis estimated from the ith eigenvalue of the sample
covariance matrix defined in Equation 5.

After the fPCA model has been created, a new set of n
sample functions can be generated, gi¢, where i = 1,.,n. The
SRSFs gi*and vectors viare extracted from g, and the vectors
viare then transformed to the warping functions yithrough the
exponential map:

Yilt) = A (expy, (vi(s)))2ds o

This results in a generated set of n SRSFs (representing
amplitude variability) and n warping functions (representing
phase variability).
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C. Functional Tolerence Bounds

Recall that a tolerance bound is used to bound a percentage
of the population with a given level of confidence. In this case,
it is of interest to generate an equal-tailed tolerance bound,
defined as the (a/2) * 100% lower bound on the (p/2)th
quantile and the (1 - a/2) * 100% upper bound on the (1 -
p/2)th quantile. Here, (1 - p) * 100 represents the percentage
of the population to be bounded, while (1-a)*100
corresponds to the confidence level.

1) Bootstrapping to Estimate FDA Tolerance Bounds
Once the set of n SRSFs and warping functions have been
sampled from the aforementioned fPCA model, the p/2 and

(1-p/2) quantiles can be estimated, denoted as (q;/ 2’ qik—p/ 2)
and (¥p/2,Y1-p/2), respectively. While there are numerous ways
to estimate these quantiles, the method used in this work is
small extension of the method presented by Xie et al [11].

This process of generating n SRSF and warping functions and
estimating the quantiles is repeated S times to get a
distribution of quantile values for g*and y. Tolerance bounds
on these quantiles can then be estimated by calculating the
a/2 and (1-a/2) quantiles from these distributions,
respectively. This results in four tolerance bounds -

(qg/?q;—aﬂ), the respective lower and upper tolerance
bounds for g%, and (ya/2Y¥1-o2), the respective lower and
upper tolerance bounds for y. The tolerance bounds for g*are
transformed to the amplitude space via integration to produce

bounds on the amplitude: (f ;/2’ f l*—a/Q). Figures 2a and 2b
provide examples of the respective tolerance bounds on the
phase and amplitude spaces.

While the bounds on the warping functions are likely as
expected, the bounds on the aligned functions may be
unintuitive. This is because the amplitude bounds are
constructed to capture the “shape” of the functions [5], rather
than provide a point wise bound as is typical for scalar
tolerance bounds. More discussion of this idea and
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recommendations for other options to visualize these bounds
is provided in [5], [11].

2) Transformation of Bounds
Since the goal of this work is to estimate bounds in the
original data space, the bounds on the amplitude and phase
spaces must be transformed. 4 pairwise combinations of the
bounds are composed, that is,

o (far=2) B (Yar2)
o (farr2) B (y1-a/2)
. (fl*—a/Z) (Ya/z)

o (fi*-as2) @ (y1-a/2)

Figure 3 gives an example of these four bounds. Again,
these bounds may not be intuitive upon first glance. However,
it can be seen that they bound both the phase and amplitude
variability well. Two of the bounds bound the functions on the
left, while the other two bound them on the right. Similarly,
two bounds bound the functions from above, while the other
two bound from below. All four bounds represent some
combination of phase and amplitude variability that is
important to capture.

III.  APPLICATION ON ELECTRICAL DEVICE DATA

After the text edit has been completed, the paper is ready
for the template. Duplicate the template file by using the Save
As command, and use the naming convention prescribed by
your conference for the name of your paper. In this newly
created file, highlight all of the contents and import your
prepared text file.

The electrical data, collected in the form of current voltage
sweeps (I-V) curves, used for this analysis was taken from 44
measurements on MMSZ5239BT1-G Zener Diodes. Further
details of these measurements are given in [4] as this data
represents a subset of the data used to perform FDA to find a
nominal device from a set of 116 measurements. Mirroring the
approach of that analysis, measurement data is converted to

0.00 025 050 075 1.00 0.00 025 050 075 1.00

(a) Aligned Functions (b) Warping Functions

Fig. 2. Upper (solid) and lower (dashed) tolerance bounds on aligned (a)
and warping (b) functions Example of a Notional example of warping
functional data.

a Ln(Abs(current)) vs. Voltage scale prior to further analyses.
However, using FDA to provide tolerance bounds estimates
is not amenable to data with discontinuities and significant
electrical noise from which to derive the SRSFs. Thus, the
measured data, which had electrical noise in the very low
current portions of the measurement, and discontinuities and
locations where different measurement sweeps were stitched
together, was replicated using a circuit simulation with the

Xyce simulation tool. Simulations replicated the measured
device behavior quite accurately, as shown in the example
Figure 4, which gives one of the simulated diode
measurements used in the FDA analysis. The simulated I-V
curves also provided smooth continuous data in the low
current region dominated by instrument noise, where the
device response is beyond instrument detection range. If FDA
is the primary goal on a set of electrical measurements, this
approach could be modified to correct, or at least mitigate,
the noise and discontinuities often present in most typical
electrical data measurements of this type.

= Lower Amplitude, Lower Phase == Upper Amplitude, Lower Phase

** Lower Amplitude, Upper Phase = = ' Upper Amplitude, Upper Phase

Fig. 3. Example of transformed tolerance bounds in the original data space

In the example shown in Figure 4, the log-plot of the
simulation data always produces a cusp when the current
transitions from positive to negative values. This cusp, an
artifact of the low current simulated values and the log
operation, complicates the spline fitting process. To eliminate
this cusp, data below 5.1 x 10-12 A is removed from the
simulated measurement and replaced with a polynomial fit,
resulting in an adjustment to the data as shown by the blue
dashed line in the figure. Figure 5 shows the I-V curve from
all 44 simulated Zener diode devices.

Current(Log)

=75 -5.0 =25 0.0
Voltage

Fig. 4. I-V curve from 44 simulated Zener diode devices
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== Adjustment for Statistical Analysis ® Measured Data === Simulated Response
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Fig. 5. Example of simulating a measured I-V curve for a MMSZ5239BT1-
G Zener diode. Simulated data was used to test and demonstrate the
tolerance bound analysis.

IV. RESULTS

After the text edit has been completed, the paper is ready
for the template. Duplicate the template file by using the Save
As command, and use the naming convention prescribed by
your conference for the name of your paper. In this newly
created file, highlight all of the contents and import your
prepared text file.

An fPCA model was fit to the Zener diode data using 5
dominant principal components. From the fPCA model, 500
bootstrap samples were generated to calculate tolerance
bounds on the amplitude and phase spaces, as shown in Figure
6. These bounds were constructed with p =.10 and a = .05
such that they represent where we would expect 90% of the
devices to fall with 95% confidence. From these plots, we can
see that most of the phase and amplitude variation occurs in
the reverse region of the I-V curve.

A coverage study was conducted to assess whether these
bounds are performing as intended. This study involved first
sampling a new set of 44 diode devices from the original data
with replacement (i.e., the same device can be sampled more
than once). The warping functions (y) and aligned SRSFs (g*)
were then calculated for each device. For amplitude, the 90th
quantile of the SRSFs was calculated and compared to the
(Yas2,Y1-/2) tolerance bound to see if the entire SRSF fell
within that bound. This was repeated 500 times to estimate
the confidence level of this bound (e.g., for a 95% confidence
level, we would expect the SRSFs to fall within the tolerance
bounds 95% of the time). This same process was performed
for the phase tolerance bounds using the warping functions y.
The amplitude and phase confidence levels were estimated to
be 97.7% and 99.3%, respectively. While somewhat
conservative, these values are relatively close to the expected
value of 95% confidence, and it is consistent with the results
seen in [5].

All four pairwise combinations of these bounds were then
composed to estimate the tolerance bounds in the original data
space, as described in Section III-B. These bounds are shown
in Figure 7. As a comparison, a point-wise non-parametric
bootstrap was used to calculate a tolerance bound across

Current(log)

-207

Voltage

(a) Aligned Functions (b) Warping Functions

-75 -5.0 -25 0.0 0.00 0.25 0.50 0.75 1.00

Fig. 6. Tolerance bounds on the aligned and warping functions of the Zener
diode data. These functions separate the amplitude and phase
variability, respectively, of the data

voltage. Ostensibly, from a use perspective, the most
important region to accurately capture current and amplitude
variation in the Zener diode is in the reverse breakdown
region, plotted in Figures 8a and 8b. Figure 8a shows that the
non-parametric point wise calculation provides bounds that,
initially, seem reasonable for the given dataset of 44
measurements. However, because the point wise bound does
not account for a functional relationship between the
dependent and independent variables, bounds determined in
this way provide a non-physical representation of real Zener
diode behavior. The inflection on the bound shown on the left
hand side of the data in Figure 8a is a clear example of an I-
V characteristic not exhibited by any of the 44 measurements
which form the basis of the analysis. Further, this
characteristic is not a true physical behavior of

Lower Amplitude, Lower Ph3%e  Upper Amplitude, Lower Phase
Lower Amplitude, Upper Pltase  Upper Amplitude, Upper Phase

Current (log)
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Voltage

Fig. 7. Tolerance Bounds

a real diode. Extracting a set of model parameters from this
behavior would lead to a non-physical representation of a real
device.

Since FDA captures variability across a function and
decomposes that functional variability into phase and
amplitude parts, a case can be made to consider the four
tolerance bounds defined by both phase variability and
amplitude variability. Figure 8b provides an illustrative
example. The four bounds in this region capture four bounding
aspects of the diode behavior as it approaches breakdown, the
knee in the curves and voltages between -8.5V and -8.85V: 1)
a high leakage current and high breakdown voltage,
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corresponding to upper amplitude and upper phase, ii) a low
leakage current and low breakdown voltage, corresponding to
the lower amplitudelower phase bound, iii) a low leakage
current and high breakdown voltage, corresponding to the
lower amplitude-upper phase bound, and iv) a high leakage
current low breakdown voltage, corresponding to the upper
amplitude-lower phase bound. Each of these four bounding
behaviors is important when characterizing the variability of a
distribution of devices and the impact it may have in an
electrical circuit.

V. VI. CONCLUSION

We presented a functional data analysis (FDA) approach to
estimating tolerance bounds on a set of Zener diode devices.
Tolerance bounds were first generated on the phase and
amplitude spaces separately, and a coverage study was
conducted to assess the performance of these bounds. The
phase and amplitude bounds were then transformed to the
original I-V data space, allowing for these bounds to be used
in the first phase of parameter calibration for compact models
in electronic circuit design applications. Applying this
method to simulated Zener diode data showed that the FDA
approach was able to produce several physical bounds that
capture both the phase and amplitude variability in the data,
particularly

Current(Log)

Current(log)
i
g

|
o

-201

Fig. 8. Zoomed-in tolerance bounds on the reverse breakdown region for
the point wise bootstrap method (a) and the FDA method (b).

in the critical reverse breakdown region. Further research is
warranted to understand how bounds on the I-V space map
back to the parameter space for compact model parameter
calibration.
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