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Abstract

This paper presents a practical methodology for propagating and combining the effects of
random variations of several continuous scalar quantities and several random-function quantities
affecting the failure pressure of a heated pressurized vessel. The random functions are associated
with stress-strain curve test-to-test variability in replicate material strength tests (uniaxial tension
tests) on nominally identical material specimens. It is demonstrated how to effectively propagate
the curve-to-curve discrete variations and appropriately account for the small sample size of
functional data realizations. This is coordinated with the propagation of aleatory variability
described by uncertainty distributions for continuous scalar quantities of pressure-vessel wall
thickness, weld depth, and thermal-contact factor. Motivated by the high expense of the pressure
vessel simulations of heating, pressurization, and failure, a simple dimension- and order-
adaptive polynomial response surface approach is used to propagate effects of the random
variables and enable uncertainty estimates on the error contributed by using the surrogate model.
Linear convolution is used to aggregate the resultant aleatory uncertainty from the parametrically
propagated random variables with an appropriately conservative probability distribution of
aleatory effects from propagating the multiple stress-strain curves for each material. The
response surface constructions, Monte Carlo sampling of them for uncertainty propagation, and
linear sensitivity analysis and convolution procedures, are demonstrated with standard EXCEL
spreadsheet functions (no special software needed).
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1. Introduction

This paper presents a practical methodology for propagating and combining the effects of
random variations of several continuous scalar quantities and several random-function quantities
affecting the failure pressure of a heated pressurized vessel. The random functions are associated
with stress-strain curve variability from test-to-test in replicate material strength tests (uniaxial
tension tests) on nominally identical round-bar material specimens.

A difficulty is that only a few material tests and derived stress-strain curves exist for each of
several materials making up the pressure vessel. Substantial difficulties are encountered when
using spectral methods to try to infer or model, from just a few experimentally observed stress-
strain curves, the governing random function from which the experimental variations emanate
(e.g., see the appendix of [1]). This is not surprising, as even the much simpler problem of
appropriately inferring or modeling a scalar quantity's aleatory probability distribution from just
a few samples or realizations of the scalar quantity is itself a very difficult proposition (e.g., [1]-
[6]). This paper demonstrates how to effectively overcome this limitation and propagate the
curve-to-curve variations and appropriately account for the small sample size of functional data
realizations.

This methodology is coordinated with the need in the present problem to propagate and combine
the effects of aleatory variability of pressure-vessel scalar quantities of wall thickness, weld
depth, and thermal-contact effectiveness factor. Motivated by the high expense of the pressure
vessel simulations of heating, pressurization, and failure, a simple dimension- and order-
adaptive polynomial response-surface surrogate model is used for inexpensive Monte Carlo
propagation of the effects of the mentioned parametric scalar uncertainties. The upgradable
response surface also enables uncertainty estimates on the error contributed by using the
surrogate model.

Then linear convolution is used to aggregate the resultant aleatory uncertainty from the
parametrically propagated random variables with an appropriately conservative probability
distribution of aleatory effects from propagating the various stress-strain curves for the materials.
The convolution methodology was developed and first applied in a verification, validation, and
uncertainty quantification (VVUQ) methodology advancement project [7] involving the heated
pressurized vessel. The convolution methodology has since been successfully used also in a
complex structural-dynamics model calibration and VVUQ problem at Sandia National
Laboratories.

Sensitivity analyses are also performed in the present paper to assess the relative contributions of
the parametric and discrete uncertainty sources on the total variability of predicted failure
pressure.

Various aspects of the heated-pressurized-vessel VVUQ problem and associated methodology are
described in [7] — [14] and the present paper. The modeling and VVUQ activities were performed
under a multi-year "abnormal thermal-mechanical breacr (T-M breach) task [7] of a Predictive
Capability Assessment Project (PCAP) in the Verification & Validation (V&V) sub-element of
the U.S. Dept. of Energy Advanced Simulation and Computing (ASC) program. The goal of the
PCAP T-M breach task was to assess the error and quantify the uncertainty in modeling the
thermal-chemical-mechanical response and weld related breach failure of sealed canisters ("cans")
weakened by high temperatures and pressurized by heat-induced pyrolysis of foam. The planned
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outcome of the PCAP T-M breach task was to measure improvements in prediction accuracy over
time as the models and computer platforms became more capable.

The Sandia Weapon System Engineering and Assessment Technology Campaign (WSEAT)
program supported the PCAP project by conducting material characterization tests [13] and
validation experiments [14] [1] (see Figure 1). This partnership provided an opportunity to develop
a fully integrated process from design of experiments through model validation assessment, with
uncertainty reduced as much as possible and propagated through the process.
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Figure 1. Thermal-chemical-mechanical validation experiments 1141, including internal pressure response.
The 'can' includes the cylindrical ̀ sidewalls' or 'walls', as well as the top 'lid' and bottom 'base'.

Breach failures were expected to occur, and in the tests did occur, at the circumferential
perimeter (laser) weld that joins the top lid to the can sidewalls. This is because the weld
thickness is significantly less than the can lid and sidewalls (see Figure 2), and the tests/cans of
interest in this paper were radiatively heated at the lid top surface, so the top weld material was
much hotter/weaker than the perimeter weld material at the bottom or base of the can. While
prediction of canister internal temperatures, time to breach, and breach pressure are sought in the
T-M breach task, breach pressure is the quantity of interest (QOI) in this paper.

Section 2 of this paper summarizes the physics models used for predicting can thermal,
pressurization, and structural response (and failure). Selected physics model simulations are used
to populate adaptive polynomial response-surface surrogate models as described in section 3.
Their use for inexpensive Monte Carlo propagation of the parametric aleatory uncertainties is
described, as are surrogate-related error estimates that the upgradable response surfaces enable.
Selected simulations with the physics model are used to propagate the various stress-strain
curves as described in Section 4. Section 5 describes the convolution procedure for aggregating
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the resultant aleatory response (pressure breach failure) uncertainties obtained in sections 3 and
4. Sensitivity analyses regarding the various contributors to uncertainty are presented in sections
3 - 5. Section 6 provides some summary observations and conclusions.

Figure 2. Closeup of modeled geometry where can top lid, sidewall, and internal foam meet. (Nominal
geometry values are 0.03 in. weld depth, 0.0645 in. wall thickness, and 0.007 in. clearance between
the lid and side wall in the weld region.) Figure from [7].

2. Thermal-Chemical-Mechanical-Failure Models of Heated Pressurizing Can
Response and Failure

2.1 Material Tension Tests and Stress-Strain Constitutive Model

The material tension tests and results, strength constitutive model, and material damage models
and failure criteria are briefly summarized here from references [7] and [1]. These provide much
more detailed information.

The material characterization tests involve uniaxial tension tests on several cylinder specimens at
each of seven temperatures spanning the 800C temperature excursion experienced by the heated
can, for two stainless-steel alloys that make up the can materials. Reference [13] provides
information on the material testing equipment and procedures.

Nominal strain rates of 0.001/s were used in the tension tests. This strain rate was based on
model-predicted conditions in the PCAP thermal-mechanical breach experiments [1]. A strain
rate of 0.0001/s, based on computed local strain rates in the weld region, was also tested to
explore the sensitivity of the material to strain rate. However, strain-rate effects were not
included in the PCAP material strength model because it was figured that in the accident
scenarios being assessed, strain-rate effects were of secondary importance prior to reaching a
stress-strain maximum load condition where our failure criteria would be activated (see next
subsection). For conditions past maximum load, it is well known that 304L stainless steel (ss)
has non-negligible strain-rate dependence at all temperatures.
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The test results for the PCAP can lid and base material are shown in Figure 3 in terms of
engineering stress versus engineering strain. As expected, the strength of the material decreases
as the temperature increases. However, around 600°C there is a noticeable inflection point in the
temperature related shape trend of the stress-strain curves. It is believed that this inflection
occurs because the deformation mechanisms change from void growth and deformation to grain
slippage at about half of the material melt temperature which is roughly 700°C for 304L stainless
steel.
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Figure 3. Example of engineering stress vs engineering strain curves for PCAP lid and base material (ss
304L). Figure from [9], [13].

The test results for the PCAP wall material are found in [7], [1]. Like the lid material, the
strength of the wall material decreases as the temperature increases and a noticeable change in
the temperature related shape trend of the stress-strain curves occurs at about 600°C.

Mechanical constitutive behavior is modeled using a strain-rate-independent isotropic ductile-
metal Multi-Linear Elastic Plastic (MLEP) plasticity model (e.g., [9], [15]). Creep effects were
not considered but are thought to be immaterial to the material response prediction scenarios of
interest. Other fundamental assumptions of the MLEP model are summarized in, e.g., [9]. The
MLEP model is a standard metal plasticity constitutive representation for industry practice. It
helps FE models be affordable with reasonable computational resources and is suitable as long
as the limitations are understood and not violated significantly. The MLEP model only relates
stress and strain; no intrinsic statement about material strength related failure is made. Material
failure modeling is discussed in the next subsection.

The parameterized form of the MLEP-specific stress-strain curve (Cauchy stress — plastic
logarithmic strain) is represented in piecewise linear fashion by multiple linear segments. This
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parameterization involves solving sequential inverse problems to determine in a step-wise
manner the MLEP stress—strain curve segments that best recover the load-displacement or
engineering stress-strain curve (e.g. Fig. 3) from the tensile tests. A fitting procedure described in
[9] (following [39]) was used to enable the inverse calculation. Several factors that influence the
success of the iterative MLEP procedure are described. The differences between MLEP curves
calibrated to different nominally identical tests/specimens were much larger than the fitting
errors in the calibrations.

Before the onset of specimen necking in a tension test, the MLEP stress and strain values can be
calculated from the load-displacement recorded from the load cell of the testing frame and an
extensometer mounted on the specimen. Once necking occurs, the true strain in the middle of the
necked region must be calculated from a finite element (FE) model of the gage section of the
specimen. The ASC massively parallel solid-mechanics code Adagio [16] was used for the
simulations. To ensure that necking initiates between the ends of the gage section, a small
imperfection is introduced in the mesh. Hex-mesh density effects were investigated and
controlled to be negligible up to the material failure criterion point on the MLEP stress—strain
curve corresponding to the maximum stress point on the experimental curve (see next
subsection).

Since the test data contains a large number of potentially noisy data points, some data
conditioning through down-sampling and/or smoothing is necessary, resulting in order —20 data
points (see [9]). This is based on engineering judgement.

2.2 Weld Material Modeling and Failure Criteria

It was originally planned to obtain weld material stress-strain curves and failure criteria by
calibrating to tension tests of butt-weld square bar specimens and then validating to can pie-
section weld flexure tests to failure. However, both endeavors proved to be problematic
experimentally and computationally [7] such that adequate model accuracy could not be
established.

As a reasonable alternative, the following approach was taken. For welds of normal quality that
don't have anomalies like voids, empirical evidence strongly suggests that weld material strength
lies somewhere between the strengths of the two materials joined by the weld—here the lid and
the can wall. Wall/tube material was slightly weaker at max load than the lid/bar-stock material,
so a conservative-leaning choice was made to assign the wall/tube material curves and failure
criteria to the weld.

Microstructural examination of the PCAP cans pressurized to failure indicated ductile overload
failure at the laser welds of the heated lids. As described in [9], Equivalent plastic strain (EQPS)
and tearing parameter (TP) are candidate models for accumulated material damage. These models'
computed damage values at the point of maximum engineering stress in the uniaxial tension tests
are taken to be critical material failure levels for these two models. This is consistent with current
failure modeling practice at Sandia in conjunction with MLEP models in overload failure modes.
Because of the notorious difficulty of predicting structural failure from material damage modeling,
the two models and their failure criteria were used and assessed as candidate indicators of onset of
structural failure in the PCAP application.
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Although TP and EQPS critical values are often defined based on tension test material separation
failure, the critical values for this project were defined at the maximum load in the tension tests.
This decision was made for two reasons. First, the global loading of the can structure is due to
pressurization, and the pressure is always increasing and will cause incipient failure when a
maximum load condition is reached. Second, the weld failures observed in the can tests showed
little evidence of necking. Up to maximum load there is little necking. It was reasoned that
defining critical failure values based on any finite element in the model reaching the hardening
curve maximum load point identified from the tension tests would result in conservative failure
predictions for the can.

Hence, the failure criteria defined at the maximum load in the tube/wall round bar tension tests
were used to signify weld material failure in the can breach predictions. The failure criteria
values are given in [9] for each tube/wall stress-strain curve at the tested temperatures.

2.3 Models for Can Thermal-Chemical-Structural Response and Failure

The thermal-chemical-mechanical models used are briefly summarized next from [7]. The
Sandia SIERRA module [18] for massively parallel thermal-fluid computations was used to
model the heating of the can, its thermal response, and thermally-induced chemical-kinetic
decomposition of the foam [19] and resulting gas species generation that causes pressurization.
The solid mechanics and structural modeling module [16] was used to model the mechanical
response of the can and failure at the weld under quasi-static pressurization and high
temperatures and large temperature variations in time and space.

The thermal-chemical simulation provides the temperature and pressure boundary conditions for
the mechanical model. The only feedback from the mechanical model to the thermal-chemical
model is the can's internal volume change due to deformation. The volume change affects the
pressure level in the can through the Ideal Gas Law which is evaluated within the thermal
module and then communicated to the mechanical module. The can geometry is not
changed/updated in the computational heat-transfer model because the can deformation is fairly
slight (lateral bulging equivalent to a few can-wall widths) so is thought to negligibly affect the
heat transfer (or at least not affect the heat transfer in the model, given the way it was modeled).
The heat transfer and foam decomposition submodels and parameters are also not affected by
pressure in the current treatment. (The uncertainties associated with including pressure effects on
these phenomena were judged larger than the error involved by not including pressure effects,
and any modeling error effects would be quantified through the validation comparisons ([7], [1])
that were the culmination of the PCAP assessments.)

The thermal-chemical and mechanical models were run in a "concurrent but segregatecr manner
in which Sandia's SIERRA [20] software framework for massively parallel multi-physics
computations passed temperature, pressure, and volume information between the thermal-
chemical simulation and the mechanical simulation. SIERRA coordinates and manages the
different time-stepping of the thermal-chemical and mechanical codes and the transfer of spatial
temperature fields solved on the tetrahedral thermal mesh to nodal temperature assignments to
the nodes of the mechanical hex mesh.
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The full 360-degree can geometry with internal foam was used for the thermal-chemical
simulations and a 90-degree pie-slice geometry without foam was used for the mechanical
simulations. A full 360-degree geometry was used in the thermal-chemical simulations because
at the time, the foam and enclosure radiation models didn't accommodate any kind of symmetry
boundary conditions. The mechanical simulations were much more computationally expensive,
so a quarter-can partial geometry without foam was used to reduce cost. Leaving foam out of the
mechanical model tremendously reduces the number of finite elements and thus computational
cost, and is thought to have negligible impact on structural behavior and pressure-breach failure
in the PCAP problem.

In the thermal model, a uniform heat flux boundary condition was applied on the lid surface. The
flux level was calculated as follows to be consistent with the temperature data from the
experiment control TCs. The four control TCs were fully inserted into radially drilled holes at
midplane on the lids at 0, 90, 180, and 270 degrees around the lids [14]. A Proportional-Integral-
Derivative (PID) routine [21] was used to determine the heat flux magnitude needed to match the
control thermocouple temperature responses. This approach results in a more realistic
temperature distribution versus using a TC-guided uniform temperature condition over the entire
lid surface. On the side walls and base of the can, convection and radiation boundary conditions
were specified (as described in [10]) to represent the heat transfer between the can exterior and
the surrounding environment.

Different element types and mesh densities are used as appropriate in the thermal and mechanical
models [7]. Code verification activities were performed for the thermal and solid/structural
mechanics codes and models ([7]). For the order-200 thermal-mechanical and mechanical-only
simulations run for VVUQ and sensitivity analysis in the PCAP project, an affordable mesh size
of 1.85 million hex elements for the structural model (12 elements through the thickness of the
weld) and 14.3 million tet elements for the more affordable thermal model were used. This
affordable 'Level 4' mesh was one in a succession that went up to Level 6 with approximately
double the number of elements in the structural and thermal models (see [8]). The succession of
meshes was used for a solution verification assessment in [7][1] to estimate and account for
Mesh 4 related error/uncertainty in the VVUQ analysis and results in [12]. Solver tolerances
were experimented with and set to contribute small error/uncertainty relative to mesh effects.

Figure 4 shows the Level 4 mesh at a critical portion of the structural model where weld failure
is determined in the thermal-structural simulations. Stress concentration is evident at the crown
of the weld notch. This type of weld geometry representation was found to best support weld
failure predictions, from analyzing many different geometry representation schemes ([17], [7]).
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Figure 4. Weld-section closeup of structural-model Level 4 hex mesh used in the model validation, UQ, and
sensitivity analysis simulations in the PCAP project. Stress concentration is evident at the crown of the weld
notch. (Figure from [8].)

3. Parametric Propagation of Aleatory Random Variable Inputs to
Can Breach-Pressure Variability Predictions

The breach pressure predictions are intended to estimate failure pressure variability in an
asymptotically large population of cans having small can-to-can variations characteristic of
measured or inferred variations in five actual cans (nominally identical) experimentally tested to
failure [14]. Experimental failure pressures are to be compared against predicted failure
pressures in a model validation assessment. For proper validation comparisons, the test-to-test
and can-to-can aleatory variations in the experiments and simulations must be properly treated,
as well as the systematic or epistemic uncertainties in the experiments and simulations. An
uncertainty accounting system for processing experimental and model/simulation aleatory and
epistemic uncertainties for the purpose of model validation comparisons is explained and
illustrated in [12] for the PCAP application. The uncertainty propagation and aggregation
methods and results in the present paper as well as [10], [ 1 1] feed into the model validation
assessment in [12]. Careful characterization of the uncertainties to be treated is essential. This is
documented in [7] - [14].

We state from [7] the can-to-can variability ranges estimated from experimental measurement
data and mod-sim analysis for the random variables parametrically propagated in this section.

• weld depth, d: variation between reasonable limits of [0.023 in, 0.031 in], to be treated
as a uniform distribution

• wall thickness, t: variation between reasonable limits of [0.062 in, 0.0645 in], to be
treated as a uniform distribution

• lid thermal contact effectiveness factor, f variation between reasonable limits of
[20%, 90%] of the way between extremes of no heat transfer and perfect-contact heat
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transfer across the vertical and horizontal sections of the gap between lid and wall in
Figure 2, to be treated as a uniform distribution between 20% and 90%.

Note that wall flexibility was reasoned to potentially have a non-negligible effect on maximum
stress at the weld, and thus on the pressure level at which failure is predicted. Wall flexibility is
affected by both wall thickness and temperature of the wall (the latter is non-negligibly affected
by the gap heat transfer from the lid which was radiatively heated in the validation experiments
being modeled). Of course, weld depth non-negligibly affects predicted failure pressure.

The other prominent aleatory uncertainties in the PCAP problem are the material stress-strain
curves for the can lids, weld, and wall. These uncertainties come in the form of discrete
uncertainty information (not parametric) and are addressed in the next section. The parametric
uncertainties in this section are evaluated conditional on nominal median-strength stress-strain
curves used for the can lids, weld, and wall as identified in the next section, and nominal values
of the 13 other parametric uncertainties in the validation analysis (see [12]). The model (Mesh 4)
was run with experimental heating and other conditions from Test 6, which is the reference
nominal test (see [10]) of the five replicates in the PCAP validation assessment.

The remainder of this section describes the construction of dimension- and order- adaptive
upgradable response-surface surrogate models used for inexpensive Monte Carlo propagation of
the parametric uncertainties cited above. A key feature of the upgradable response surfaces is
that they enable surrogate-related error estimation. Sensitivity analysis of the relative
contributions of the various uncertainty sources to the total uncertainty is also presented.

Construction of 3D Linear Response Surface Approximation

Table 3-1 shows the equation sets and coefficient values for linear polynomial response surfaces
of failure pressure as a function of the said parameters, for both TP and EQPS failure criteria.
The linear polynomial response surface equation is written in the generic formf(wl,w2,w3)
presented in the table. To determine the equation's four coefficients b0 — b3, four versions of the
equation are obtained by evaluating it at four different points in the three-dimensional (3D) d7f-t
parameter space where response values are also computed with the computational physics model.
These points are at four strategically selected "construction points" in the parameter space as
discussed below. The system of four equations and four unknowns is solved to yield the values
of the four coefficients. Then the equation provides a linear approximation to the physics
model's output response variation over the parameter space and can be evaluated at any point (d,
f, t) in the space to yield an approximate response value at points away from the four
construction points (at the construction points, the RSA function exactly matches the physics
model results).

In the present analysis, the physics model's nominal input values do,f0, t° (and the nominal
values for the other model inputs, though those are not explicitly written in the following)
comprise a reference point z° in the parameter space of inputs to the physics model. Then a
vector of input values Md, f, t] T can be written as the sum of the reference values 2)°= [do, ft,
to] T and deviations WIAd, Af, At] T from the reference values:

i = i0 ± vv).
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The TP and EQPS polynomial RSAsf(wi) used in this study are written in terms of independent
orthogonal coordinates w 1, w2, and w3 that are respectively parallel with, and positively directed
in the same directions as, the d, f, and t parameter space coordinates. The wl-w2-w3 coordinate
frame origin is located at the reference nominal point z° in the d7f-t parameter space, which has
physics model input values (do, fo, to) in the original coordinates, and RSA function input values
(0,0,0) in the w 1 ,w2,w3 translated coordinates. Any other point zi in the input parameter space of
the physics model, like the points selected for RSA construction, map to input parameter values
tiv'i for the RSA function using a rearrangement of Eqn. 1:

W - Z - Z . (2)

Because z° is comprised of nominal physics model inputs, is generally centrally located in
the uncertainty region to be investigated. The construction points for the RSA polynomials are
also usually in or closely around the uncertainty region to best support local RSA accuracy over
it. It was found that writing the polynomial RSA in terms of the relatively small local
displacements tit;=[Ad, Af, At]T of the construction points relative to i° yielded much better
conditioning of the simultaneous linear and nonlinear equations to be solved for the coefficients
of the polynomial functions. Thus. the coordinate transformation in Eqns. A and B was
necessary. This allowed significantly more accurate solutions for the coefficients, and therefore
more accurate RSAs, than if they were written in terms of the original global parameter
coordinates d, f, t.

Hence, we write the linear polynomial RSA r for a generic response quantity r in this subsection
in terms of the three local displacement variables wl, w2, and w3:

f(W) = b0 + bl.wl + b2.w2 + b3.w3. (3)

To determine the N+1 = 4 coefficients of this 3D linear polynomial (N= the number of
dimensions = 3) we need the physics model results at four construction points in the parameter
space. The polynomial exactly goes through all four of them by construction. For convenience in
solving for the coefficients, one point is placed at the origin location z° of the local coordinate

system. Evaluating the physics model at the nominal inputs in [1] corresponding to z° =1 yields
for the TP failure criterion:

r(z = = = 974.939 psi. (4)

Setting this value equal to the RSA value at this point, where Eqn. 3 is written at the coordinates

iTt;=13 for the point's location in the local RSA coordinate system, yields

(17v3=0) = 974.939 psi = b0 + bl.(w 1 =0) + b2.(w2=0) + b3.(w3=0) = b0. (5)

The matrix form of the right side of this equation is written in Table 3-1 as an inner product of

the elements (1 0 0 0) in the table's row labeled 1 and the column vector of coefficients i; in
the table. The highlighted value in the same row and in the column with heading 'True Y' is the
physics model result 974.939 in equations 4 and 5.
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The table's labeled row 2 is formed by evaluating the physics model with weld depth d = 0.026
in while holding all other inputs at nominal. A failure pressure of 910.302 psi was obtained with
the TP failure criteria. Weld depth values d = 0.026 in and d° = 0.03 in (the nominal value for
i°) were judged to span enough of the range of weld depths, [0.023 — 0.31] in, to yield a
representative linear trend of failure pressure versus weld depth. Depth d = 0.026 in maps to a
displacement wl = -0.004 in relative to the nominal value d° = 0.03 in. Writing Eqn. 3 for this
case yields

f(w1= -0.004, w2=0, w3=0) = 910.302 psi = b0 + b 1 .(wl = -0.004) + b2.(w2=0) + b3.(w3=0).

The matrix form of this equation is in Table 3-1 as an inner product of the elements (1 -0.004 0

0) in the table's row labeled 2 and the coefficient vector b, with the physics model result 910.302
psi shown highlighted in blue in the same row.

A similar process yields the matrix form of the equation in the table's row labeled 3. For this
equation, the physics model with perfect heat transfer across the vertical and horizontal sections
of the gap between the can lid and wall in Figure 2 (full thermal-contact effect fraction f = 1) was
run with all the other inputs P. A failure pressure of 893.482 psi is obtained for the TP criterion.
This yielded an opposite extreme to the nominal result in Eqn. 4 using the physics model with no
heat transfer in the gap region (thermal-contact effect fraction f = 0). The thermal-contact effect
fraction f = 1 relative to the nominal value f = 0 maps to the perturbation term w2 = +1
highlighted in yellow in the table's row labeled 3.

A similar process yields the matrix form of the equation in the table's row labeled 4. For this
equation the physics model was evaluated with wall thickness t = 0.062 in while holding all other
inputs at nominal. A failure pressure of 957.303 psi was obtained for the TP failure criterion.
This thickness lies at the lower extreme versus the nominal thickness 0.0645 in which lies at the
upper extreme of the uncertainty range. Wall thickness t = 0.062 in relative to the nominal value
t = 0.0645 in maps to a perturbation term w3 = -0.0025 in highlighted in yellow in the table's
row labeled 4.

The four simultaneous linear equations in matrix form in Table 3-lare solved in a Microsoft XL
spreadsheet as follows. Four initial values are posed for the ̀ coeffs. {13}' column in the table and
then the optimization based nonlinear solver is employed to iterate on the values until the matrix-
vector products in column ̀ A*b = y_predicted' match the 'True Y' values from the physics
model runs to within negligibly small differences whose squared values are listed in the 'Da
Squared' column. A nonlinear solver is used because that is all that is available in XL, but a
direct solve could easily be performed on the set of linear equations. When quadratic terms are
added to the polynomial RSAs (later in this subsection), corresponding nonlinear equations exist
in the set of equations to be solved, so an iterative solver must be used.
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Table 3-1. Equation sets and solved coefficients for linear polynomial response surfaces for TP and EQPS

failure pressures as a function of the aleatory model parameters.

TP-TravModel-Alea-LIN (3D linear fcn.)

!translated coordinates where local origin is at reference point from which main-effects perturbations are taken i

f(wl,w2,w3)= b0 + bl*w1 + b2*w2 + b3*w3

row Const wl w2 w3 coeffs. {b} A*b = y_piTrue Y Diff. Squared

1 1 0 0 0 b0 974.94 974.9378 974.939 2.219E-06

2 1 -0.004 0 0 bl 16158.46 910.304 910.302 4.721E-06

3 1 0 1 0 b2 -81.46 893.4815 893.4823i 7.917E-08

4 1 0 0 -0.0025 b3 7053.77 957.3034 957.30 4.409E-07

7.459E-06 =sumsqrd[

EQPS-TrayModel-Alea-LAIM (3D linear fcn.)

translated coordinates where local origin is at reference point from which main-effects perturbations are taken in the uncertainty space

f(wl,w2,w3)= b0 + bl*w1+ b2*w2+ b3*w3

row Const wl w2 w3 coeffs. {b} Ath = y_predicted True Y Diff. Squared

1 1 0 0 0 b0 1446.85309 1446.853091 1446.857 1.8E-05

2 1 -0.004 0 0 bl 27176.7534 1338.146078 1338.141 3.17E-06 soln.coe

3 1 0 1 0 b2 -108.9519 1337.901192 1337.902 7.95E-07

4 1 0 0 -0.0025 b3 8708.03126 1425.083013 1425.081 2.71E-06

2.47E-051=sumsqr

Monte Carlo Sampling of Model Input Uncertainties and Propagation through Linear RSAs

The linear RSA Eqn. 3 can be evaluated for model input parameter deviations (wl, w2, and w3)
from the nominal inputs P. The relevant uncertainty ranges for parameter deviations are listed in
the green colored cells in Table 3-2. These ranges map to the ranges of the untransformed
parameter uncertainties listed in bullets near the beginning of this section. Below the green
heading cells in columns C - E of Table 3-2 are ten thousand (lOk) random Monte Carlo (MC)
samples of each variable WI sampled uniformly over its range. The summary statistics at the
bottom of the table show that the maximum, minimum, mean, and standard deviation of the
samples in each column do not change significantly when increasing from 5k to 10k samples, so
5k or lOk samples are deemed sufficient for the analysis purposes described next.
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10000
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10019 Nam max = r 0.0010 0.9000
r

 0.0000

10020 first 5000 min = -0.0070r 0.2003 r -0.0025

10021 samples stdev 0.0023 r 0.2007r 0.0007

10022

10023

10024
N 4 x N TR-tray-alai-LIN-10C I 1+ 1

974.94 -7.04E+01 -6.92E401 44.92E+00 0.00E+00 0.00E+00 0.00E+00

mean =
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variance, c?

-49.212

16.135
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37.160

-44.786

-16.296
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0.000

0.000
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0.000
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0.000

830.47 972.35 1.1150E404 1.0000

sum = 8.721E+06

0,000 872.06

0.000

0.000

0.000

1/380.90 268.31 25.94 0.00 0.00 0.00 )

a r = 1575.14"-.5Urri_s

varlsum_var= 82.43% 16,02% 1,55% 0.00%

var./totvare 28.90% 5.62% 0.54% 0.00%

mean = -49.569 -44.612 -8.896 0.000

max = 16.684 -16.317 -0.001 0.000

min = -113.109 -73.311 -17.634 0.000

stdev, a = 37.393 16.347 5.104 0.000

variance, a' = 11398.22 267.24 25.05 0.00

sum var = 1591.50

sum_varic

0.00%

0.00%

0.000

0.000

0.000

0.000

972.35

776.88

41.11

1690.02 = response variance

from 10,000 MC samples

0.025 percent 798.37

97.5 percent i 947.72

Equiv.Normal

p_EN = 873.0452

a_EN = 38.09846

4777.40

0.00% Importance Factors from linear variance decomposition

0.00%

0.000

0.000

0.000

0.000

64.94% e-mtl. curves; importance Factors including variance from

871.86

972.35

776.88

41.41

0.00 0.00 ) 1714.76 = response variance

from 5000 MC samples



Propagation of the 10k MC row-sets of the input parameter values in columns C - E through the
linear RSA is accomplished in columns J - M of the spreadsheet in Table 3-2. In columns J — M,
the polynomial coefficient values in row 3 come from Table 3-1 as the linear polynomial
coefficients b0 - b3 for the TP failure criteria. These correspond to the generic coefficients c0 -
c3 in row 2 (columns C - E) of the table. These coefficients are part of a generic linear
polynomial in up to six variables xi (which correspond to variables vvi in the present case).
Setting coefficients c4=c5=c6=0 in the spreadsheet reduces the potential 6D linear response
surface to the desired 3D linear RSA in 3 variables, Eqn. 3.

For a given row in the spreadsheet, the MC realizations of the three random variables -wi in
columns C - E are multiplied by coefficients ci (= bi) as defined at the bottom of row 4 in
columns K - M. These three monomial values and the constant term c0 (= b0) are summed (per
Eqn. 3) and the result is put in column Q. Hence, column Q contains 10k random samples of TP
failure pressure uncertainty from linearly propagated input aleatory uncertainties. A histogram of
the 10k results is shown in the table.

Similar procedures and considerations hold for the EQPS failure criteria results in Table 3-3. The
10k MC row-sets of input parameter values in columns C - E are the same as in Table 3-2. In
columns J - M of Table 3-3 the values in row 3 come from Table 3-1 as the linear polynomial
coefficients b0 - b3 for the EQPS failure criteria. Column Q of Table 3-3 contains lOk random
samples of EQPS failure pressure uncertainty from linearly propagated input aleatory
uncertainties. A histogram of the lOk results is plotted in the table.

Uncertainty and Sensitivity Analysis of Linearized Uncertainty Propagation Results

Rows 10,008 — 10,012 in Table 3-3 list various summary statistics (named in column J) for the
10k values in each column K - Q. Each input parameter's uncertainty when linearly mapped into
response uncertainty produces a response variance listed in row 10012, columns K - P. In linear
uncertainty propagation, the total variance of the output response quantity is equal to the sum of
response variances contributed by the individual sources. Row 10,014 lists the sum, 1675 psi2 ,
in blue print. The square root of this gives a standard deviation of 41 psi.

As a check, this sum of variances, 1675 psi2 , is within 0.9% of the variance 1690 psi2 in
row/column 10012/Q computed directly from the 10k response samples in column Q. The 5k-
sample sum of variances 1692 psi2 in row/column 10024/N is about 1.3% different from the 5k-
sample variance of 1715 psi2 in row/column 10022/Q. Thus, the difference between sum of
variances and the direct sample variance from column Q is somewhat larger using 5k samples
than with 10k samples. Nonetheless, the 5k and lOk sample variances in column Q are within
1.5% of each other and the sums of variances in column N are within 1% of each other for 5k
and 10k samples. This suggests that sampling convergence error is small compared to other
errors and uncertainties in the validation UQ analysis to follow. Accordingly, sample sizes of
10k are used for all final results in what follows.

The fractional contribution of each uncertainty source to the summed response variance is listed
in row 10,015. Columns K, L, M of this row reveal that weld depth uncertainty is responsible for
about 82% of the summed response variance, thermal-contact fraction is responsible for about
16%, and wall thickness is only responsible for 2%. (The sensitivity fractions listed in row
10,016 also involve variance contributed by material stress-strain curve variability as determined
in Section 4 .)
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Similar procedures and considerations hold for the EQPS failure criteria results in Table 3-3. The
linearized response variances are given in row 10,012. Row 10,014 lists in blue letters the sum of
the variances in row 10,012. This sum is 4426 psi2. The square root of this gives a standard
deviation of 67 psi. This is about 63% higher than the 41 psi standard deviation predicted with
the TP failure criteria. Thus, considerably larger failure pressure variability is predicted with the
EQPS failure criteria than with the TP criteria.

As a check, the sum of variances, 4426, in Table 3-3 is within 0.7% of the variance result 4460
in row/column 10012/Q computed directly from the lOk response samples in column Q. The 5k-
sample sum of variances 4473 in row/column 10024/N is about 1.2% different from the 5k-
sample variance of 4526 in row/column 10022/Q. Again, as with the TP failure criteria, the
difference between sum of variances and the direct sample variance from column Q is somewhat
larger using 5k samples than with lOk samples. Nonetheless, the 5k and 10k sample variances in
column Q are within 1.5% of each other and the sums of variances in column N are within 1.1%
of each other for 5k and 10k samples. Again, the 10k samples appear adequate relative to other
errors and uncertainties in the validation UQ analysis.

Columns K, L, M of row 10,015 indicate that weld depth uncertainty is responsible for about
88.2% of the summed response variance, thermal-contact fraction is responsible for about 10.9%,
and wall thickness is only responsible for 0.9%. This split of response sensitivity to these input
uncertainty sources is not substantially different than with the TP failure criteria. In subsection
12.4.1.3, we discuss the sensitivity fractions listed in row 10,016.

Construction of 3D Linear-Quadratic Response Surface Approximation

From the linear sensitivity analysis, weld depth and lid thermal contact uncertainties are both
substantial contributors to total response uncertainty. Therefore, it is desirable to see if response
nonlinearities to these factors significantly impact the uncertainty results.

We first consider weld depth. Because this was found to be such a dominant factor, two new
models with weld depths of 0.024 in and 0.028 in were run at nominal conditions for all other
factors. Figure 5 shows the results for all four weld depths analyzed, 0.024 in, 0.026 in, 0.028 in,
and 0.03 in. Among the two new results at 0.024 in and 0.028 in, 0.024 in was chosen for the
following quadratic response analysis because it lies nearest to the lower bound (0.023 in) of the
weld depth's uncertainty range, where failure pressure is lowest and breach occurs earliest, and
as such, poses the biggest threat to safety margins on container failure.

Working with the new 0.024 in weld depth and the previous two depths 0.026 and 0.03 in,
enables upgrading to a quadratic approximation of response variation in this factor. The
associated linear+quadratic polynomial equation is presented in Table 3-4. The new equation has
the quadratic term in red, bl-l*wl*wl, added to the linear terms from Eqn. 3. Now the five
coefficients b0 - bl and b1-1 must be solved for. To do this, the new linear+quadratic polynomial
equation is evaluated at the five input parameter sets (five construction points in the parameter
space) where physics model results exist—the polynomial exactly goes through all five points.
These are the four previous construction points from the linear development + the new physics
model result at 0.024 in weld depth.
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Figure 5. Failure pressure predictions from critical TP and EQPS values for four weld depths 0.024, 0.026,
0.028, and 0.03 in. and all other inputs at nominal values. (Figure from [7].)

Table 3-4. Equation sets and solved coefficients for linear+quadratic polynomial response surfaces for
CompSim model TP and EQPS failure pressures as a function of the aleatory model
parameters

TP-TrayModel-Alea (2D linear + 1D quadratic in weld depth)

translated coordinates where local origin is at reference point from which main-effects perturbations are taken in the uncerl

f(wl,w2,w3)= b0+ bl*w1 + b2*w2+ b3*w3 + b1-1*w1*w1

row Const wl w2 w3 w1*w1 coeffs. {b} b = y_predicl True Y )iff. Squared

1 1 0 0 0 0 974.94 974.9392261 974.9393 1.24E-08

2 1 -0.004 0 0 0.000016 12883.92 910.302775F10.301. 9.162E-07

3 1 0 1 0 0 -81.46 893.4817591 893.4817 1.051E-09

4 1 0 0 -0.0025 0 7054.68 957.302516r 957.302 5.368E-08

5 1 -0.006 0 0 0.000036 -818797.18 868.158984 4.469E-07

1.43E-06 =sumscird

EQPS-TravModel-Alea (2D linear + 1D quadratic in weld depth)

translated coordinates where local origin is at reference point from which main-effects perturbations are taken in the uncertainty space

f(wl,w2,w3)= b0 + b1*w1+ b2*w2+ b3*w3 + b1-1*w1*w1

row Const wl w2 w3 wl**2 coeffs. iblcoeffs. {b} A*b =y_predicted True Y Diff. Squared

1 1 0 0 0

2 1 -0.004 0 0

3 1 0 1 0

4 1 0 0 -0.0025

0

0.000016

0

0

5 1 -0.006 0 0 0.000036

18

IX) 1446.85733 1446.857334

bl 15467.1872 1338.144296

b2 -108.95525 1337.902083

b3 8710.38651 1425.081368

b1-1 -2927768.1 1248.65456

2.3E-18

7.93E-18

4.83E-19

5.9E-19

1.11E-17

2.24E-17 =sumsqr



Table 3-5 presents the matrix form of the five new equations in five unknowns. Note that the
solved value of coefficient bl changes from the value in the linear equations in Table 3-1, but the
solved values of coefficients b0, b2, and b3 do not change. This is because the equations for
these latter coefficients, rows labeled 1, 3, and 4 do not change from Table 3-1 to Table 3-5. But
row 2's equation changes from Table 3-1 to Table 3-5. The equations in row 2 and the new row 5
both involve non-zero terms multiplying coefficients b 1 and b1-1 pertaining to the weld-depth
variable and the quadratic function in this variable.

Next we consider the lid-wall thermal-contact effect. The uncertainty in the thermal-contact
fraction f variable has a substantial (19%) contribution to the summed response variance from the
three factors in this section. Normally, this large of a relative contribution would warrant an
upgrade to a quadratic response approximation in this variable, but this was precluded in the
present study. It is clear that bounding treatments for lid thermal contact with the can wall are the
no-contact and full perfect contact extremes described earlier. However, it is unclear what a
given intermediate heat transfer condition would correspond to in terms of % thermal-contact
effect, or vice-versa, e.g. what a 50% thermal-contact effect fraction would correspond to in
terms of heat-transfer conditions between the lid and can wall. Although physics model
calculations of intermediate cases of air radiative heat transfer across the gap between the lid and
can wall were used to roughly estimate a physically guided lower bound of 20% thermal-contact
effect fraction as described in section 12.3, the 20% value was not judged precise enough to pair
with these heat transfer conditions to build an accurate quadratic variation function in this factor.
Therefore, we elected to stay with the linear representation in this factor for the uncertainty
propagation to be discussed next. Examples of linear-quadratic response surface construction for
multiple variables treated quadratically can be found in [10], [11].

MC Propagation of Model Input Uncertainties through Linear-Quadratic RSA

As explained above, the equations and coefficient solutions in Table 3-4 comprise the TP
linear+quadratic RSA to be used for the uncertainty propagation discussed next. The relevant
uncertainty ranges and MC samples of parameter deviations in columns C - E of Table 3-5 are
the same as in columns C - E of Table 3-2. Propagation of the 10k MC row-sets of the input
parameter values in columns C - E through the linear+quadratic RSA function is accomplished in
columns J - N of the spreadsheet in Table 3-5. In these columns, the values in row 3 come from
the Table 3-4 polynomial coefficients {b} for the TP failure criteria. Column Q in Table 3-5
contains 10k random samples of linear-quadratic RSA failure pressure uncertainty for TP failure
criteria. A histogram of the 10k results is shown in the table.

Similar procedures and considerations hold for the EQPS failure criteria results in Table 3-6. The
10k MC row-sets of input parameter values in columns C - E are the same as in Table 3-3 and
Table 3-2. In columns J - N of Table 3-6, the values in row 3 come from the Table 3-4
polynomial coefficients {b} for the EQPS failure criteria. Column Q in Table 3-6 contains lOk
random samples of linear-quadratic RSA response uncertainty for EQPS failure pressure. A
histogram of the 10k results is plotted in the table.
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Uncertainty and Sensitivity Analysis of Linear-Quadratic Uncertainty Propagation Results

One prominent change relative to the linear RSA results is that the linear-quadratic RSA results
in Table 3-5 and Table 3-6 each show substantial differences between their response variances in
columns Q computed from MC sampling compared to their summed variance results in blue
print in column N. For the TP failure criteria, the 10k-sample response variance in Table 3-5 is
2003 psi2 in cell Q10012 while the summed variance in cell N10014 is 35% less, 1316 psi2 . This
reflects that summing the individual factors' propagated variance contributions is only a valid
operation when the uncertainties are linearly propagated. Since this is not the case here, only the
variance 2003 psi2 computed from the lOk response samples in column Q is relevant. The 5k-
sample version of this variance is 2036 psi2 in cell Q10022. This is about 1.6% different from the
10k value. Again, this suggests that sampling convergence error is small relative to other errors
and uncertainties in the validation UQ analysis.

Analogous results for the EQPS failure criteria have the 10k-sample response variance 6541 psi2
in Table 3-6 cell Q10012 about 45% greater than the summed variance in cell N10014. The 10k-
sample variance 6541 psi2 is about 1.7% different from the 5k-sample value in cell Q10022,
again indicating relatively small sampling convergence error.

The TP failure pressure standard deviation of 45 psi here (corresponding to 10k-sample variance
2003 psi2) is about 9% larger than the 41 psi standard deviation determined with the linear RSA.
The EQPS failure pressure standard deviation of 81 psi here (corresponding to 10k-sample
variance 6541 psi2) is about 21% larger than the 67 psi standard deviation determined with the
linear RSA. Thus, for both the EQPS and TP failure criteria, the nonlinear upgraded RSA
indicates considerably higher failure pressure variability than the linear RSA does.

With the nonlinear RSAs the EQPS standard deviation of 81 psi is about 1.8X the TP standard
deviation of 45 psi. With the linear RSAs, the relative difference is somewhat less: the 67 psi for
EQPS-linear is about 1.6X the 4 lpsi for TP-linear.

Judging from the substantial differences produced by the linear and linear-quadratic RSAs, the
upgrade to the nonlinear RSA was necessary. The large results changes suggest that results may
continue to change appreciably with further higher-order refinements of the RSA. This would
normally be explored with further upgrades to the RSA, but in this study, this was not feasible
due to time and resource constraints. Nonetheless, a rough estimate of the failure-pressure
variability prediction error due to the potentially under-resolved linear-quadratic response
surface is pursued in [11].

Although the summed variances in row 10,014 of Table 3-5 and Table 3-6 are not accurate, the
linear-quadratic polynomial terms' sensitivity fractions in row 10,015 are interpreted as rough
but useful indicators of response sensitivity to the uncertain inputs. For TP in Table 3-5, the
variance contributions in row 10,012 columns K and N for weld-depth linear and quadratic
polynomial terms are respectively 67% and 11% of the summed variance. The combined weld
depth share is 78% of the response variance, thermal-contact fraction is responsible for 20%
(column L), and wall thickness share is 2% (column M). These sensitivities are close to what was
found in the linear analysis (82%, 16%, and 2%).

For EQPS in Table 3-6, the weld-depth linear and quadratic polynomial terms respectively
contribute 35% and 51% of the summed variance. The combined weld depth share is 86% of the
response variance, the thermal-contact fraction share is 13%, and wall thickness share is 1%.
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These sensitivities are also very close to what was found in the linear analysis (88%, 11%, and
1%).

Note that the contributed variance from the linear term associated with weld depth (column K in
row 10,012) differs from the corresponding value in Table 3-3 for the linear-only RSA. But the
other factors of thermal-contact fraction and wall thickness (columns L and M in row 10,012) in
Table 3-6 retain the same variance contributions as in Table 3-3 for the linear-only RSA. This is
because thermal-contact fraction and wall thickness remain linear (unchanged, not upgraded to
quadratic) in the linear-quadratic RSA; the polynomial coefficients for these factors are the same
in the linear RSA (Table 3-1) and the linear-quadratic RSA (Table 3-4). Similar observations
apply for the TP results.

From Figure 5, when the quadratic variation in failure pressure based on weld depths 0.024 in,
0.026 in, 0.03 in is sampled over the uncertainty range [0.023 in, 0.031 in], the variance in failure
pressure results increases compared to sampling from a linear approximation based on the 0.026
in and 0.03 in weld depths. Hence, the effect of the upgraded polynomial order in weld depth is
to increase the total response variance, as reported above. Since the other factors of thermal-
contact fraction and wall thickness retain the same linear contributions to variance as the linear
RSA, the increase in response variance is due solely to the increased contribution from the weld-
depth factor. An accurate sensitivity fraction would reflect this. But for both TP and EQPS, the
linear results show a larger fraction of variance attributed to weld depth variations (e.g., 88% for
EQPS) than the linear-quadratic results do (86% for EQPS). This is an artifact of the error
involved from forming sensitivity fractions for the nonlinear RSA propagation by using a linear-
analogue sensitivity approach. The linear analogue approach applied here can provide simple and
rough but useful indication of response sensitivities, but important project resource allocation or
program decisions may require a more accurate nonlinear sensitivity analysis (SA) method be
employed. References [22]-[24] survey and demonstrate more sophisticated and accurate
nonlinear SA methods.

4. Discrete Propagation of Material Strength and Failure Variability to Can Breach-
Pressure Variability Predictions

The uncertainty sources considered in this section are the aleatory uncertainties that come in
discrete (not parametric) form of multiple slightly varying stress-strain curves and failure criteria
representing stochastic material strength variations in the can lid, weld, and wall materials. These
curve-to-curve variations and failure criteria when propagated cause predicted variability (and
uncertainty thereof) in can response and failure pressure level. The 16 uncertainties not related to
material strength and failure variability are all parametric in nature and are held at nominal
values listed in [12] for the purposes of the following material-curve propagations and analysis
of results.

Sensitivity studies in the current paper and in [11] and [12] of the effects of the more prominent
modeling uncertainties regarding thermal, pressurization, and structural phenomena in the PCAP
problem reveal that material curve strength variations are among the most significant causes of
failure-pressure predicted variability and uncertainty thereof.
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4.1 Dealing with Temperature Dependence of the Material Stress-Strain Curves

Dealing with temperature dependence of the material curves adds a significant difficulty to the
discrete propagation problem. This is addressed in the following two data processing steps before
propagation can be performed in section 4.2. Brief summaries are given here. See [9] for a
detailed explanation and application of the steps.

Step I - Material stress-strain curves strength-to-failure ranking and down-selection

In this step, the effective strength of the repeat material curves at each of the seven
characterization temperatures (e.g., Figure 3) were ranked and then down-selected to three
representative curves (high, medium, and low strength) according to predicted failure pressure
predictions from the PCAP can simulations. The isothermal mechanical-only simulations used
Mesh 4. At most temperatures only three "good" tests/material curves were obtained, but at some
temperatures as much as five experimental curves were obtained and considered in the down-
selection to three representative curves of high, medium, and low strength as portrayed in Figure
6.

600C 700C 800C

Red curves = high strength (HS) Cr-E curve set ov r temperatures

Green curves = medium strength (MS) set over temperatures
Blue curves = low strength (LS) set over temperatures

Figure 6. Notional portrayal of high, medium, and low effective strength stress-strain curves at adjacent
characterization temperatures.

At a given temperature, the effective strength of each material curve (say for bar stock used in
the can lid and base) was determined by the calculated pressure at which weld critical TP or
EQPS value was reached (i.e., when can failure was reached). Curve strength rankings were
usually the same whether critical weld TP or EQPS value was used. Recall that the weld material
was specified to be the same as the wall material because it was weaker than the lid material, so
provides a more conservative representation of the weld material strength. Nonetheless, the
problem is pursued as though the weld material has its own stress-strain curve data in order to
illustrate how three different materials would be handled.

The curve-strength ranking process at a given temperature is much more involved when multiple
materials exist than when only one material exists (which allows a simple straightforward
process, [25]). This is because the strength ranking of a given set of material curves can depend
on the particular combination of material curves used for the other two materials (for example,
wall strength and flexure can affect stress-strain phenomena at the weld notch). There are many
such combinations because each of the two other materials has multiple material curves, so the
ranking investigation should involve confirming curve ranking is robust over all or at least a few
different test combinations of the other materials' curves. This was found in [9] to be true but for
a single test exception.
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Approximately 120 mechanical-only can-level simulations were performed in the material curves
down-selection and strength ranking process. This work and MLEP material model calibrations
were the most laborious and computationally expensive aspects of the PCAP VVUQ activity.

Step II — Correlation and Interpolation of stress-strain curves across temperatures

For each material, three curves for low, medium, and high effective strength exist per
characterization temperature. When several material curves exist at each temperature, for UQ
purposes strength is assumed to be highly correlated across temperatures such that a curve with
higher relative strength at lower temperatures is assumed to retain higher relative strength at
higher temperatures. This assumes that material weakening mechanisms and % weakening are
roughly similar with increasing temperature whether the material is initially of higher, medium,
or lower relative strength.

The correlation assumption appears physically reasonable and tremendously reduces the number
of potential combinations of material curves to be sampled when a material transitions
temperatures. For example, there are 3x3x3=27 potential combinations of material curve
combinations in the figure that could be used in a simulation that transitions temperatures from
600°C to 700°C to 800°C. So to investigate all these potential combinations would take 27
CompSim runs. To transition all seven temperatures would present 37 = 2187 possible
combinations. This is just for one material. For the three materials in this problem, each with
three material curve options, this would present 21873 1010 possible combinations. Clearly this
is unaffordable and seems wholly unnecessary given the reasonableness of the temperature-
strength correlation assumption.

Hence, for each material, we link, e.g., its high-strength curves across the seven characterization
temperatures. We interpolate across the seven characterization temperatures as follows. At a
temperature in-between two adjacent characterization temperatures, the stress is linearly
interpolated from the stress values (at the applicable input stain level) from the two stress-strain
curves at the upper and lower enveloping temperatures. This effectively gives one constructed
high-strength, temperature-varying, stress-strain function for each material. Temperature-
dependent medium and low strength functions are likewise constructed. For this problem, we end
up with each material having high strength (HS), medium strength (MS), and low strength (LS)
temperature-dependent stress-strain functions as depicted in Figure 7.

z Lid

—Weld

\ Wall

{HS, MS, LS}

{HS, MS, LS}

{HS, MS, LS}

27 -equally likely
curve-strength
combinations,

— 27 simulations
with other
uncertainties
held at their

— nominal values

TP EQPS

failuve
pressure

Figure 7. Notional depiction of PCAP can materials high strength (HS), medium strength (MS), and low
strength (LS) temperature-dependent stress-strain functions, and propagation of the material strength
variability via 27 assumed equally-likely combinations of material strength functions (e.g. one combination
is lid MS function / weld HS function / wall LS function).
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4.2 Stress-Strain Function Uncertainty Propagation and Results

Given the constructed high, medium, and low strength stress-strain functions for the materials, a
strategy was taken to form and propagate all 27 possible combinations of stress-strain functions
as conveyed in Figure 7. The model (Mesh 4) was run with experimental heating and other
conditions from Test 6 in [14]. This is the reference nominal test of the five replicate tests in the
PCAP validation assessment (see [12]). This yields 27 failure pressures for each the TP and the
EQPS failure criteria as depicted in the figure. Quantitative results are presented in [9]. Briefly,
the EQPS results are an average of about 460 psi or 50% higher than the TP failure pressures. (It
was later determined that much of this difference could be explainable by very under-converged
Mesh 4 results with the EPQP damage model, see [8].)

A sensitivity analysis in [9] shows that, for both failure criteria, the weld material strength
variations have the largest effect, then the wall strength variations, then the lid strength
variations. The lid was much thicker than the walls, so flexes and impacts the stress condition
(and maximum stress) at the weld relatively little regardless of which lid-strength curve is used.
Nevertheless, no material's strength variations have an insignificant effect.

We next consider the processing and interpretation of the pressure failure results. If dealing with
multiple but few stress-strain curves for only one material, then appropriate uncertainty treatment
has been established and confirmed in the series of papers and reports [26], [1], [4], [5]. The
approach recognizes that the stress-strain curves are discrete realizations with no readily
identifiable parametric relationship between them. Yet, the stress-strain (ss) curves come from
and belong to a larger population that reflects the material's variability. Fortunately, a
mathematical description of the generating function for the larger population of ss curves is not
needed with the approach summarized next. The output scalar data (the predicted failure
pressures) are worked with, rather than attempting to create a parametric or spectral generator
function that is consistent with the ss curve data realizations.

An application of the approach with, say, three stress-strain function curves for a single material
would result in three predicted failure pressures with the EQPS or TP failure criteria. (We could
also work with other scalar output responses of interest, like displacement, strain, or Von Mises
stress at a given point on the can and at a given time, or even spatial-temporal maxima as scalar
quantities that vary with the three input stress-strain function curves.) Because only three
function curves and corresponding failure pressure realizations exist, small-sample related error
will typically exist in any characterization of aleatory uncertainty due to the stochastic material
strength variability. Thus, substantial small-sample epistemic uncertainty exists concerning the
error in characterizing the aleatory variability.

A small number of realizations or samples will usually under-predict the true variance of
material strength and related failure pressures or other responses. Mean or central response will
also usually be significantly mispredicted. Potential significant non-conservative small-sample
bias error can result, causing unsafe engineering design and risk analysis, even if the physics
prediction model is perfect in every other way.

Statistical Tolerance Intervals (TIs, e.g, [27]-[29]) attempt to compensate for sparse sample data
by appropriately biasing response estimates. For instance, the three failure pressure values would
be processed into 95%coverage/90%confidence TIs (95/90 TIs). With reasonably high reliability
these estimate conservative but not overly conservative bounds on the "centre' 95% of response
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from very sparse random samples/realizations of the input data. The central 95% of response is
the range between the 2.5 and 97.5 percentiles of the true response distribution that would arise
from an infinite number of samples. This central 95% range has been found to be convenient and
meaningful for model validation comparisons of experimental and model-predicted aleatory
response quantities (e.g., [25], [30]-[32]), which is also the purpose of the present UQ results.

Investigations in [2]-[5] have concluded 95/90 TIs to be preferable to many other UQ methods
tried or critically assessed for estimating, from very sparse sample data, conservative but not
overly conservative bounds on the central 95% of response. As reviewed in those documents, the
other methods tried or critically evaluated include Bootstrapping, optimized four-parameter
Johnson-family distribution fit to the response samples, non-parametric kernel density estimation
specifically designed for sparse data, non-parametric cubic-spline probability density functions
(PDF) fit to the data based on maximum likelihood, and Bayesian sparse-data approaches.

The TI approach is also much easier to use than the other UQ methods investigated. A 95/90 TI
is constructed by simply multiplying the calculated standard deviation a of the data samples by a
factorfto create an interval of total length 2f a. The interval is centered about the calculated
mean IT of the samples. The multiplying factorfis readily available from tables in statistical texts
(e.g. [28], [29]) or formulas (e.g. [27]), or available software (e.g. [33]) that encodes the
formulas.

Although derived for Normal populations, 95/90 TIs will span the central 95% ranges of many
other sparsely sampled PDF types with reasonable/useful odds or confidence. For instance, 89%
of 144 PDFs (including highly skewed and multi-modal highly non-Normal distributions)
studied in [1], [4], [5] had empirical confidence levels of 75% or greater with 95/90 TIs and N=4
random samples. From studies in [4] on several diverse PDFs, it is projected that 90% of the 144
PDFs would have confidence levels > 85% with 95/95 TIs and N=4.3 These average or expected
confidence levels are shown to decline slowly as the number of samples increases.

Although TIs often provide reliably conservative estimates, TIs can egregiously exaggerate the
true variability when very few samples are involved. This is a downside that comes with high
confidence levels of bounding the true central 95% of response.

Incidentally, if the model predictions are to be used to support estimation of small "tail"
probabilities of response for robust/reliable design or safety/risk analysis, the response samples
would be processed in a different way. This is demonstrated in recent investigations in [4], [6],

[35] on 16 diversely shaped distributions and tail probability magnitudes from 10-5 to 10-1.
Reliably conservative and efficient estimates of small tail probabilities are obtained. Further

3 Confidence levels of 75% or 85% are often adequate to sufficiently manage risk, especially if conservatism from
other sources exists in the analysis or results—such as when several sources of uncertainty are present where each
involves sparse data conservatively treated with the TI method. Studies in [3] and [34] indicate that when more than
one dominant or influential uncertainty sources are sparsely sampled and represented conservatively with TI
confidence levels of say >70%, when the conservatively represented uncertainties are combined in linear propagation
or aggregation, the individual conservative biases compound to yield substantially greater than 70% confidence of
conservative bias in the combined uncertainty estimate.

27



reliability and accuracy benefits occur from averaging multiple estimates from equally legitimate
subsets of samples from the available sparse-data pool (i.e., from use of statistical Jackknifing).

Now we consider the problem where the output response samples come from discrete stress-
strain function variations of multiple materials as in the present problem. A naive approach
would be to construct (e.g., 95/90) TIs from the 27 failure pressure values indicated in Figure 7
for the TP and EQPS failure criteria. However, TIs pertain to random sampling of the
contributing input uncertainties, where for 27 response samples, each of the contributing source
uncertainties would typically be sampled at 27 different values. Repeat values would not
ordinarily occur, especially with a moderately small number of samples like 27. This is not the
case here; each input stress-strain function of a given material is sampled repeatedly (nine times)
in the course of propagating all possible combinations of curves. So it was decided that
constructing TIs using n=27 would not be appropriate. (This was later supported by studies on a
linear test problem in [34].) Instead, because only nine independent realizations of input
information exist in this problem (three stress-strain functions for each of three materials), it was
ventured that TIs should be constructed based on an effective number of samples N=9. Having
no more-fundamental basis to proceed on at the time4, this course was taken in the PCAP VVUQ
project, as follows.

For an effective number of samples N=9, the multiplier factor for a 95/90 TI is f = 3.125.
Multiplying this by the calculated standard deviations an. = 34.5 psi and aEQPS = 38.87 psi of the
27 failure pressures calculated with TP and EQPS failure criteria yields TI half lengthsfa are
107.8 psi for TP and 121.5 psi for EQPS. The respective TIs are centered at respective means
TP = 971.6 psi and !YEWS = 1431.1 psi of the 27 failure pressures for the two failure criteria. The

TI upper and lower extents are located at the upper end = + f = (1079.3-TP; 1552.5-EQPS)
psi and the lower end = —f = (863.9-TP; 1309.6-EQPS) psi.

For further uncertainty representation and analysis purposes, "Equivalent Normar (EN)
distributions are constructed such that their 2.5 and 97.5 percentiles coincide with the end points
of the established 95/90 TIs. This is portrayed notionally in Figure 8. The TI EN distributions are
defined by their mean and standard deviation parameters as:

TI-ENTE(TTP= 971.6 psi; aEN-TP = 54.9 psi) (6)

TI-ENEQPs(µ EQPS = 1431.1 psi; aEN-EQPS = 62.0 psi). (7)

4 There is a lack of well-established sampling methods for identifying combinations of model inputs from sparse
quantized sets of choices or "levels" in the various factors (i.e., the levels are not prescribable; the few available stress-
strain functions are the only "levels" available), such that propagation of the relatively small number of affordable or
available input combinations will yield appropriate response statistics and distribution information. Subsequent to the
PCAP project, investigations in [36] provide a more fundamentally grounded approach. As explained in [9], the
approach would construct and average TIs based on failure pressure results from propagating selected sets of the 27
possible combinations of material curves. The selected sets would come from taking a Latin Hypercube Sampling
(LHS [37]) analogue for the sampling and Monte Carlo (MC) propagation of ss curves from multiple materials. LHS
is well recognized as an efficient sampling method [38] for Monte Carlo propagation of probabilistic uncertainty
through general nonlinear response functions or models.
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5. Convolution Aggregation of Uncertainties from Parametric and Discrete Aleatory
Sources

Figure 8 depicts the conceptual idea of convolution to aggregate the separately propagated
aleatory uncertainties defined by the material strength/failure variabilities represented by the TI
ENs defined by Eqn. 6 or 7, and the PDF histograms shown in Tables 3-2, 3-3, 3-5, 3-6 arising
from MC propagation of the three parametric uncertainties (Section 3). The random-sampling
linear convolution procedure is explained next.

Equivalent Normal PDF
from 0.95/0.90 Tolerance interval
tit to sim. results of mtl. strength
va riations

convolufion
by random
sampling

Net PDF of traveling
Aleatoa Uncertainty/ 

PDF from propagation of 3 sources
of random variability through 3D Linear-
Quadratic Polynomial Surrogate Model

— Linear in wall thickness variations

— Linear in lid thermal contact variations
— Quadratic in weld depth variations

CI All other uncertainties held at their nominal
reference values and heating conditions for Test#6 

variance decomposition (TP1

70% - material strength

23% -weld depth

6% -thermal contact

1% -wall thickness

variance decomposition (EQPS1

52% - material strength

41% -weld depth

6% -thermal contact

1% -wall thickness

Figure 8. Net PDF of failure pressure random variability and associated contribution sensitivities from
aggregation of resultant PDF of propagated parametric random variables and Equivalent Normal PDF of
material strength variability effects.

The convolution procedure treats the EN response PDF from material variability effects, and the
response PDF due to the continuous parametric sources, as being independent PDFs. It
furthermore treats the PDFs' samples/realizations relative to some nominal response value r° as
perturbations that linearly add or superpose into a combined perturbation due to material
variability + parametric geometry and contact heat-transfer temperature effects:
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where

rcionv = r° + Ar;;Ii6) + (8)

rcionv = a sample or realization of the combined (convolved) uncertainty from propagation
of the parametric uncertainty U[zI)] (where the vector notation denotes multiple

parametric uncertainty sources) and the discrete uncertainty U[fD] (here denoting
uncertainty from multiple discrete stress-strain curve function realizations from
replicate tests for each of multiple sources (multiple materials));

r° = r(4, f2, ) is the nominal response value (here failure pressure) yielded by the model
given nominal input values of the discrete and parametric uncertainties (e.g., Eqn. 4

in Section 3) where r(.4,1D) represents the model's output failure pressure variation
as a function of the said inputs);

ni,Hf8 is a sample from the response PDF obtained by propagating the parametric
uncertainty U[zp] while holding the discrete uncertainty realizations to a nominal

set .f:8 (e.g., the PDFs plotted in Tables 3-2, 3-3, 3-5, 3-6, generically designated
PDFr(U[4], in);

ri)lic12 is a sample from the response PDF obtained by propagating the discrete uncertainty

U[fD] while holding the parametric uncertainties at nominal values .4 (the PDFs

defined by Eqns. 6 and 7, generically designated PDF,(z/9, U[fD]));

ArAM = 41b) - r° ; (9)

ArDrp ° = rD I 1x-op — r o. (10)

A simplified illustrative example of linear convolution is presented below. The validity of linear
convolution in the PCAP problem depends on the following conditions.

• Independence exists between the material variability uncertainty sources that underlie
the Equivalent Normal failure-pressure response PDFs defined by Eqn. 6 or 7, and the
three geometry and heat-transfer related source uncertainties (PDFs) underlying the
failure-pressure response PDFs in Tables 3-2, 3-3, 3-5, 3-6. It is judged that this
condition is well met in the current problem.

• The resultant PDFs (Eqns. 6 and 7 and those in Tables 3-2, 3-3, 3-5, 3-6) are as well
independent from each other if there are no response interactions when the material
variability uncertainty sources are taken together with the geometry/heat-transfer
uncertainty sources. This occurs when response is linear over the joint uncertainty space
of all the source uncertainties, or when a slightly relaxed condition exists as exemplified
in the example below and stated mathematically in Fivre 9. Either case would result in
the following. If the three geometry/heat-transfer uncertainty sources were propagated
with material strength functions other than the nominal median-strength ones used in
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Section 3, the response PDFs shown in Tables 3-2, 3-3, 3-5, 3-6 would change location
along the abscissa, but not change shape. Similar considerations apply for the TI-EN
response PDFs from material strength variability if propagation of the material curves in
Section 4 occurred under values of the continuous parametric uncertainties other than the
nominal ones used. It is often the case that approximately linear behavior exists in model
calibration and validation activities over the small ranges of the input uncertainties in
these activities—which endeavor to reduce or control experimental and simulation
uncertainties to small magnitudes. In the PCAP VVUQ problem, any interactions are
judged to be small and to have negligible effect relative to the other sources of
uncertainty and numerical precision error in the problem. This was not checked or
confirmed because of time and resource constraints in the project—but normally should
be checked in project work if possible.

Note that these restrictions do not exclude interactions within the set of continuous parametric
variables or within the set of discretely represented random variables or functions. Nor are
correlations restricted within the set of parametric variables or within the set of discrete random
inputs. However, there must be no (or insignificant) interactions and correlations between the
two groups of variables (over their uncertainty ranges).

Figure 9 presents a simple example illustrating generation of random samples r~on„for
constructing the combined output distribution by linear convolution. The random-variable input
uncertainties are characterized by a continuous distribution PDFXF, = U[xp] for input variable xi,

and three samples {4} that discretely characterize uncertainty U[xD] (e.g., an otherwise
unspecified continuous random variable) for input variable xp.

Consider a random sample xP from PDFXF, as indicated in the figure. Pair this sample realization

with the three realizations {xiD} of the discretely characterized uncertainty to evaluate the model
(response function r(xp,xD)) at these variable combinations and obtain the three realizations of
response as shown. Thus, the discretely represented random variability is propagated conditional
on the particular sample value 4, from the continuous PDF uncertainty source. The

corresponding dashed blue distribution on the response axis, PDFr(4, U[xD]), signifies an
Equivalent-Normal PDF from a 95/90 tolerance interval based on the three response samples.
Note that this TI-EN PDF has the same shape that would be obtained if the process is applied for
a different sample and value 4' from PDFXF,. This occurs when no interactions exist between
variables with discrete vs. continuous uncertainty representation, either for a linear response
function r(xp,xD) or for one with slightly relaxed conditions per the equation at top-right in
Figure 9.

A random sample from the TI-EN PDF,(4, U[xD]) is marked by the green square on the
response axis in the figure. Its value is denoted rcionv; it is a combined result of propagated
effects of a random sample from the continuous input uncertainty source PDF,i, and added effect
of a random sample of response uncertainty inferred from propagated discrete samples of the
otherwise unspecified continuous input source uncertainty U[xD]. A resultant distribution of the
two effects combined can be constructed by generating many such r~on„samples from
randomized replication of the presented process.
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Figure 9. Simple example illustrating generation of random samples r_convi for constructing the
combined output distribution by linear convolution.

Note that the illustrated process is consistent with Eqn. 8 as follows. Substituting Eqn. 9 into 8
yields

i0 = ri). 43rC111)  + A

Writing this in terms of the simplified quantities in the illustrative problem gives

rcionv = + ATI) 1)4. (12)

The first term on the right side (RS) of Eqn. 12 is identified on the response axis in Figure 9. The
last term on the RS of Eqn. 12 is a perturbation defined by a special case of Eqn. 10:

Ar,61.4 = r,614 - r °. (13)

The RS of Eqn. 13 must be shown to be equivalent to the perturbation signified by the green
arrow in the figure (near the response axis) in order for the geometric construction underlying the
figure to be consistent with Eqn. 12 as a reduced special case of the general relation Eqn. 8
obtained by different geometric reasoning. The magnitude and direction of the green arrow is
defined by the difference A) below. This difference is the same as in B) corresponding to Eqn.
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13. The equivalency proceeds from the specified condition at the top-right of Figure 9 that
ensures all TI-EN PDFs have the same shape when generated from the three propagated input
samples {xib } when propagated for any set value xP of the parametric uncertainty. Thus, the
equivalence sought at the start of this paragraph is established.

A) [response value of a sample from the dashed blue TI-EN PDF,(4), U[x.0]) on the
response axis] minus [response value rj,lx,g of the middle of the three propagated discrete
samples propagated while holding the parametric uncertainty at a value 4]

B) [response value rio14 of a sample at the same quantile as in A) but from a shifted same-

shaped distribution PDF,(4), U[xD ])] minus [response value 4214 = r° of the middle of
the three propagated discrete samples propagated while holding the parametric
uncertainty at a value 41

The PCAP work used the form Eqn. 11. The first term on its RS corresponds to a sample from
the PDFs in Tables 3-2, 3-3, 3-5, or 3-6. The other term in Eqn. 11's RS is defined by Eqn. 9. In
analogy with B) above, the first term on the RS of Eqn. 9 is a sample from the TI-EN PDF in
Eqn. 6 or 7. The value r° in Eqn. 9 is found in columns J of Tables 3-2, 3-3, 3-5, 3-6. The
resultant convolution histograms are shown in Figure 10. The histograms were constructed with
10,000 rLni, samples. The shapes of the histograms are reasonably close to Gaussian. This
allows the histograms to be well approximated by Normal PDFs for representational convenience
in [11], [12].
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Figure 10. Histograms of convolved response effects from parametric and discrete aleatory input
uncertainties.

Statistics of the histograms and their Normal approximations are given in Table 5-1. Note that
the Normal approximations are developed using the 2.5 and 97.5 percentiles of the histograms,
instead of using the histogram means and standard deviations. This is thought to better cover the
uncertainty of non-symmetric distributions like the last one in Figure 10. The means and
standard deviations of the histograms are included in Table 5-1 to compare against the derived
means using the histogram 2.5 and 97.5 percentiles. The histogram means and their percentile-
derived counterparts are within 0.4% of each other in all four cases (rows of the table). The
analogous differences for standard deviations vary from a minimum of 0.8% to a maximum of
3.2%.
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Table 5-1. Statistics of Convolved Response from Parametric and Discrete Aleatory Input Uncertainties.

case 2.5%ile 97.5%ile mean stdev

Equivalent-
Normal
mean

Equivalent-
Normal
stdev

TP-linear RSA 738.9 1008.4 868.9 69.6 873.6 68.7

TP-lin+quadrat
RSA

730.7 1009.9 867.0 71.8 870.3 71.2

EQPS-linear
RSA

1106.6 1459.8 1277.7 92.3 1283.2 90.1

EQPS-
lin+quadrat

RSA
1070.6 1461.6 1270.7 102.9 1266.1 99.7

The sensitivity contributions of the net aggregated uncertainty for the linear+quadratic results are
listed in Figure 8. These numbers come from row 10,016 of Tables 3-5 and 3-6. For linear and
linear+quadratic results and both EQPS and TP failure criteria, material strength variability
contributes the most to failure pressure variability, followed by weld depth variability, thermal
contact temperature-effect variability, and wall thickness variability.

6. Conclusion

This paper presented a practical, versatile, and effective methodology for propagating and
combining the effects of random variations of several continuous scalar quantities and several
random-function quantities. It was explained how to effectively propagate the material stress-
strain curve-to-curve discrete variations and appropriately account for the small sample size of
the functional data realizations. This was coordinated with the propagation of random-variable
PDFs of three continuous parametric scalar uncertainties. Motivated by the high expense of the
physics model simulations, a simple dimension- and order- adaptive polynomial response surface
approach was used to propagate the effects of the random variables and enable uncertainty
estimates on the error contributed by using the surrogate model. Linear convolution was used to
aggregate the resultant aleatory uncertainty from the parametrically propagated random variables
with an appropriately conservative probability distribution of aleatory effects from propagating
the multiple stress-strain curves for each material. The response surface constructions and their
Monte Carlo sampling for uncertainty propagation, and linear sensitivity analysis and
convolution procedures, were demonstrated with standard EXCEL spreadsheet functions,
attesting to the relative simplicity and practicality of the versatile and effective propagation and
aggregation methodology.
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