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High-speed aerospace engineering applications rely heavily on computational fluid dynam-
ics (CFD) models for design and analysis due to the expense and difficulty of flight tests and
experiments. This reliance on CFD models necessitates performing accurate and reliable
uncertainty quantification (UQ) of the CFD models. However, it is very computationally ex-
pensive to run CFD for hypersonic flows due to the fine grid resolution required to capture the
strong shocks and large gradients that are typically present. Additionally, UQ approaches are
"many-query" problems requiring many runs with a wide range of input parameters.

One way to enable computationally expensive models to be used in such many-query prob-
lems is to employ projection-based reduced-order models (ROMs) in lieu of the (high-fidelity)
full-order model. In particular, the least-squares Petrov—Galerkin (LSPG) ROM (equipped
with hyper-reduction) has demonstrated the ability to significantly reduce simulation costs
while retaining high levels of accuracy on a range of problems including subsonic CFD appli-
cations [1, 2]. This allows computationally inexpensive LSPG ROM simulations to replace the
full-order model simulations in UQ studies, which makes this many-query task tractable, even
for large-scale CFD models.

This work presents the first application of LSPG to a hypersonic CFD application. In par-
ticular, we present results for LSPG ROMs of the HIFiRE-1 in a three-dimensional, turbulent
Mach 7.1 flow, showcasing the ability of the ROM to significantly reduce computational costs
while maintaining high levels of accuracy in computed quantities of interest.

I. Introduction
Hypersonic aerodynamics plays a crucial role in a range of aerospace engineering applications including the design

and analysis of missiles, launch vehicles, and reentry vehicles. The expense and difficulty of flight tests and experiments
for hypersonic applications has resulted in greater reliance on computational models for design and analysis than in
other flight regimes. This dependence poses the need for uncertainty quantification (UQ) to enable practitioners to study
and characterize the sources and propagation of error and uncertainties in these computational frameworks [3-6].

Virtually all UQ approaches are "many-query' because they require many evaluations of the model of interest.
Hence, if the system of interest is computationally expensive to query, UQ studies can become intractable. This is
the case for hypersonic aerodynamics models, which often associate with finite-volume (FV) computational fluid
dynamics (CFD) models characterized by highly nonlinear behavior and a large number of conserved variables when
non-equilibrium thermochemical effects are included in the model. Surrogate and reduced-order models (ROMs) are
thus necessary to overcome this barrier, and enable UQ for problems in hypersonic aerodynamics where the exploration
of a variety of parameters and operating conditions is key to characterize the response of a system.

A number of studies have been conducted that apply surrogate and low-fidelity approaches to hypersonic aerodynamics
models. Many of these proposed aerodynamic surrogates are low-fidelity models arising from simplified physics,
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including two-dimensional oblique shock relations [7] and piston-theory aerodynamics [8]. One study by Crowell
and McNamara applied a hybrid approach, which computed the steady load components using proper orthogonal
decomposition (POD) followed by a kriging interpolant of the POD coefficients in the input-parameter space,' and
computed the unsteady load via an analytical correction [9]. It should be noted that while Galerkin-projection ROMs
have been applied to both linear [10] and nonlinear [Ell] finite-element heat-transfer models of hypersonic vehicles, they
have not yet been applied to hypersonic CFD to our knowledge.

The application of projection-based ROMs can potentially provide an improvement in accuracy and robustness over
the simplified-physics and POD coefficient-interpolation approaches previously used for reducing the cost of hypersonic
aerodynamics simulations. This is due to the fact that projection-based ROMs remain strongly 'tied' to the high-fidelity
physics, as they achieve computational savings by executing a projection process directly on the equations governing the
high-fidelity model. We focus on the least-squares Petrov-Galerkin (LSPG) projection [12], due to its observed accuracy
and stability on large-scale problems in CFD [LE, 21, and its flexible optimization-based formulation that readily admits
integration of constraints that enforce conservation laws over subdomains [13].

This paper presents the application of LSPG to hypersonic CFD simulations. To our knowledge, this is the first
application of projection-based ROMs to hypersonic CFD simulations. The paper begins with an overview of the
full-order model in section g, followed by an overview of projection-based ROM techniques in section  and a series
of numerical experiments with a CFD simulation of a HIFiRE-1 wind tunnel test in section TY. Two test cases are
considered; section yv:g presents results for a two-parameter ROM and section 1V.(.1 presents a single parameter ROM
trained over a wider range of parameters with less data than the first case. Finally, section M offers some conclusions
and directions for future work.

II. Full-order model: finite-volume discretizations of hypersonic aerodynamic flows

A. Physical conservation laws
This work considers parameterized systems of physical conservation laws. In integral form, the governing equations

correspond to

dt 
f ui(1,t; µ)(11 + f t; µ) • n(i) 6'0 = f t; µ)d5c% i E N(nu), Vco g (1)

which is solved in time domain t E [0, T] given an initial condition denoted by 4 E R such that ui (1, 0; µ) = 4(1; µ),
i E N(nu), where N(a) := 11, . . . , a}. Here, w denotes any subset of the spatial domain of interest CI c I d with d < 3;
y := aw denotes the boundary of the subset co, while F := an denotes the boundary of the domain 52; d1(1) denotes
integration with respect to the boundary; and ui E ,gi E d, and si E i N(nu) denote the ith conserved variable
(per unit volume), the flux associated with the ith conserved variable (per unit area per unit time), and the source
associated with the ith conserved variable (per unit volume per unit time). Finally, n E Rd denotes the outward unit
normal to w. We emphasize that equations (I) describe conservation of any set of variables uti, i E N(nu), given their
respective flux gi and source si functions.

IY

B. Finite-volume discretization
To discretize the governing equations a), we apply the finite-volume method [LIA, 13], as it explicitly enforces

conservation over prescribed control volumes. In particular, we assume that the spatial domain n has been partitioned
into a mesh M, of Ncl E N non-overlapping (closed, connected) control volumes Sr2i c 52,, i E N(Nn). We define the
mesh as M := ,IN  and denote the boundary of the ith control volume by Fi := ani. The ith control-volumei 
boundary is partitioned into a set of faces denoted by 8i such that Fi = I x E e, Ve E 8i, i E DI. Then the full
set of Ne faces within the mesh is 8 n ei LA. U~iEi. Enforcing conservation (1) on each control volume in the
mesh yields

dt IT
f ui(1,t; + f gi(1,t; µ) • ni(50 a(1) = si(1,t; 10a i E N(nu), j E N(ATQ), (2)

;

*Note that this approach is not a projection-based ROM, as it computes POD coefficients using interpolation, not projection of the governing
equations.
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where ni E M denotes the unit normal to control volume qt. Finite-volume schemes complete the spatial discretization
by forming a state vector x E RN with N = Nnnu such that

xpi,j)(t; =
1
 t; µ) dz, i E N(nu), j E N(Nn), (3)

where I : N(nu) x N(ATE1) —> N(N) denotes a mapping from conservation-law index and control-volume index to degree
of freedom, and a velocity vector f (w,T; v) = f g(w,T; v) f (w,T; v) with fg, f S E RN whose elements consist of

go,p(x,t;µ) = ev (x;.z,t; µ) • ni(1)a(1),
flo 

1
,j)(x, t; µ) = — f sMx ; t; c11,

cit

for i E N(nu), j c N(Nn). Here, the fields grv E Rd and sr E I, i E N(nu) denote the approximated flux
and source, respectively, associated with the ith conserved variable (per unit area per unit time). Substituting

ui(5c>,t; it) c11 S2J lxi-(l4)(t; µ), gi , and st srv in Eq. (Z) and dividing by Išlj l yields

= f (x,t; x(0; µ) = x°(µ), (4)

where x1°
j)`t 

:= in, I r „9(-. µ)c11 denotes the parameterized initial condition. This is a parameterized system of
(i,"

nonlinear ordinary differential equations (ODEs) characterizing an initial value problem, which we consider to be our
full-order model (FOM). We thus refer to Eq. (®) as the FOM ODE.

In the case of computing a steady-state solution, we assume that the velocity exhibits no time dependence and set
= 0 such that the FOM ODE (4) becomes simply

f (x; = 0,

which we refer to as the FOM steady-state equations. Here, we have abused notation and set f (x; = f (x,t;

(5)

C. Hypersonic aerodynamics
In this paper, we consider high-Mach external aerodynamics The enthalpy of the flows we consider are not

sufficiently high to drive dissociation of the gas we consider (air), so solving the perfect gas, compressible Navier—Stokes
equations is the appropriate choice. The governing equations, equation of state, transport properties and boundary
conditions are presented below.

Governing Equations We consider the three—dimensional compressible Navier—Stokes equations with a turbulence
model, which corresponds to Eqn. (©) with d = 3, and nu = 5, 6 or 7 depending on the choice of turbulence modee.
The conserved quantities are written in vector form as

U-

/ U

U2

U3

U4

U5

U6

1

pvi

pv2

pv3

pE

POi

Un„ POnt

(6)

where p is density of the fluid, pvi is the fluid density times the fluid velocity vi, pE is the fluid density times the
total energy per unit mass E, and Ot is a set of scalars that belong to turbulent transport equations and nt is the number

tNote that additional conservation equations are required for non-perfect gases, and non-equilibrium chemistry, but these will not be considered
in this abstract.
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of turbulent transport equations. For the case of nt = 0, no turbulence equation is used and the set of equations are the
`laminar' perfect gas equations. For the case of nt > 1, each turbulent transport variable will have an associated inviscid
flux, viscous flux and source term entry (e.g. 01 = i% in the case of the one equation Spalart-Allmaras turbulence model).
The total energy per unit mass is the sum of the fluid's internal energy e and kinetic energy and can be written as

E = e + 
2
-
1
(v.v.). (7)

The fluxes gi can be decomposed into inviscid,Fi,

gi

and viscous, Gi, flux vectors as

= Fi(U)— Gi(U). (8)

The inviscid flux vector Fi is defined as

gn.

Fi(U) =

pVi

pviv + Põij

pEvi + Pvi

Fturb

Flurb

(9)

where P is the pressure of the fluid and Fittitrb Auenotes the turbulent inviscid flux in the i-th Cartesian direction associated
with the t-th turbulent transport variable. The viscous flux vector Gi is written by

Gi(U) =

0

TiJ

Tijvj — qi
Gturbt i

Gturb

(10)

where rif and qi are the viscous stress tensor and the heat flux vector, respectively, and represent diffusive effects
of the fluid Similar to the turbulent inviscid fluxes, Gijuirb are the viscous fluxes associated with the t-th turbulent
transport variable. In addition to the advection transport mechanism associated with the motion of the fluid, the fluid
has the ability to transport momentum and energy via a diffusion process. In the absence of any diffusion, the viscous
Navier—Stokes equations reduce to the inviscid Euler equations which account solely for advection. Since viscous effects
are of primary concern for most practical aerodynamic problems, the Euler equations will not be further discussed.

The viscous stress tensor Tti requires a constitutive equation which relates the viscosity and spatial derivatives of the
velocity to the stresses. For a Newtonian fluid (i.e. one which has a linear stress/strain relationship) the deviatoric stress
tensor is often written as

avi ay./ avk 
(11)7' • = — — 

/1.15axi 
ij ,a.x.;  Caxk 

where µ is the viscosity and A is the bulk viscosity of the fluid. For a Newtonian fluid the bulk viscosity is often
expressed as A =

The heat flux vector qi is a measure of the thermal energy flow and is typically written using Fourier's law

aT
qi = —K —,

Oxi

where K is the gas thermal conductivity and T is the gas temperature.

(12)
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Lastly the source vector S is written as

S(U) E

si

/

sl

sn,

where St is the source term contribution from each turbulent transport equation.

(13)

Equation of State For a calorically perfect gas, an equation of state is needed to relate two independent state variables
to the third. Thus, the perfect gas equation of state is usually written as

P = pRT, (14)

where R is a constant specific to the type of gas (for air R= 287.1 J/kg/K). The calorically perfect gas assumption has
the following requirements: (a) the gas is in thermal equilibrium, (b) the gas is not chemically reacting, (c) the internal
energy and enthalpy are dependent only on temperature, and (d) the specific heats (c, and cp) are constant.

In accordance with these assumptions, the internal energy and enthalpy are computed by the equations

and the specific heats are written as

e = c„T , h = cpT, (15)

cv =
y — 1

R yR
C
P 
= 
y —

where y is the ratio of specific heats (for air y = 1.4) and is expressed as

cP

= —•
cv

(16)

(17)

An alternative but equivalent form of the perfect gas equation of state can be obtained by writing the temperature as
T = e(y — 1)/R. Inserting this temperature expression into Eq. (14) we obtain the following form of the ideal gas
equation

P = (y — 1)pe. (18)

The Mach number is defined as the fluid speed divided by the speed of sound C

and the speed of sound is computed by

J 
M=

C

C=

(19)

(20)

Transport Properties The viscous stress tensor Tij and heat flux vector iv rely on transport coefficients that determine
the rate of the diffusion process. The viscosity coefficient for a gas is a macroscopic approximation of momentum
transport within the flow as a result of molecular diffusion. Several models for the viscosity of a gas exist, with the most
common probably being Sutherland's law. The Sutherland formula is written in two coefficient form as

T312
P = Pref T + Tref

(21)
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For air at temperatures below roughly 1000K and pressures below around 1 x 106 N/m2, valid reference values are

iiref = 1.458 x 10-6 kglm• s • K112 and Tref = 110.4K. The Sutherland formula may also be written in a three coefficient
form as

T )
3/2 

Tref + S
= Pref (—

Tref T + S
(22)

where pref = 1.716 x 10-5 kg/m • s, Tref = 273.11K and S = 110.56K.
The coefficient of thermal conductivity needed for the heat flux computation is a measure of the energy transport

resulting from molecular collisions. The thermal conductivity of a gas is often modeled as a relation of the Prandtl
number and viscosity by the equation

Cpil
K = —

Pr '
(23)

where cp is the specific heat of the gas at constant pressure, Pr is the Prandtl number and µ is the viscosity of the fluid.
The Prandtl number is the ratio of the viscous diffusion rate to the thermal diffusion rate and for laminar flow of air at
moderate temperatures the Prandtl number is assumed to be constant and equal to approximately 0.71.

Boundary Conditions The system of equations presented in (©) are completed by a set of boundary conditions

b(U) = b(U , µ) on Ff, (24)

which prescribe the values b of a general nonlinear boundary condition b through time. Flux boundary conditions may
be imposed such that

F1(U) = i(U, µ) on ff, (25)

and
Gi(U) = Gi(U , µ) on rf. (26)

Additionally, the conservative variables U must be specified at each point x as initial conditions at t = 0

t(x,t= 0; µ) = 110(5c% µ) in nj. (27)

D. Computational barrier: many-query problems
For hypersonic aerodynamics models it is vital to estimate uncertainty to design robust flight vehicles and to

determine robust control policies for them. There are many sources of uncertainty in hypersonic CFD simulations,
including flight conditions, vehicle geometry deformation, turbulence model parameters, turbulence model form, and
boundary layer transition location. Although the examples presented in this work do not model chemical non-equilibrium
effects, it should be noted that non-equilibrium chemistry models contain many additional uncertain parameters. The
large number of uncertain parameters ny for hypersonic aerodynamics models make it necessary to evaluate the model
many times for many different sets of parameters µ to obtain reasonable estimates of uncertainty from a UQ approach.

In addition to the large number of uncertain parameters, hypersonic CFD can require a large computational mesh,
M, to sufficiently resolve shockwaves and the large temperature and velocity gradients near surfaces. This can yield a
large state-space dimension N (e.g., N 107). This introduces a de facto computational barrier: the full-order model is
too computationally expensive to solve enough times to obtain reasonable uncertainty estimates. Such cases demand
a method for approximately solving the full-order model while retaining high levels of accuracy. We now present a
method that (a) computes a low-dimensional representation of the state using a linear subspace, and (b) computes a
dynamics model for the resulting latent state that exactly satisfies the physical conservation laws over subdomains
comprising unions of control volumes of the mesh.

III. Reduced-order modeling

A. Least-squares Petrov-Galerkin projection
Classical projection-based reduced-order models compute an approximate solution x from an affine function

i(t; µ) = x°(µ) + 41:01(t; µ), (28)
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where 0 E exP is the reduced-basis matrix of dimension p < N and ± E RP denotes the generalized coordinates.
This basis can be computed in a variety of ways during the offline stage, e.g., eigenmode analysis, POD [IX or the
reduced-basis method [T7, LIS]. Typically, (1) is orthonormal, and (DT (I) = I . Note that it does not need to be orthonormal
for LSPG, unlike other ROM methods such as Galerkin projection.

In the case of a steady simulation, LSPG substitutes the approximation x 2 into the FOM steady-state equations
(5), and subsequently minimizes residual in a weighted €2-norm, i.e.,

= arg min I I Af (x°(p) + 02; P)I12. (29)
2ERP

where A = I , for example. However, to ensure that this model incurs an N-independent operation count, this weighting
matrix should be sparse in the sense that it has a small number of nonzero columns. In this case, one can set
A = (PA:00+ Pr and A = Pr in the case of gappy POD and collocation, respectively. Here, Pr E {0,1}"po'N denotes
a sampling matrix comprising selected rows of the N x N identity matrix, while Or E RNxP' is a pr-dimensional
reduced-basis matrix constructed for the residual f . Employing the gappy POD approximation results in the GNAT
reduced-order model [1].

B. Conservative LSPG projection
As proposed in Ref. [El], we now modify the LSPG ROM for steady simulations (Eq. (®)) by enforcing conservation

on the decomposed mesh as nonlinear equality constraints. In particular, conservative LSPG (C-LSPG) projection for
steady simulations computes a solution 2 that satisfies

minimize ll Af (x°(µ) + 02; 11)112
ZE12P

subject to ef (x; = O.

where C will be defined in section LaLd
For hyper-reduced C-LSPG, we can instead satisfy an approximate conservation constraint

minimize ll Af (x°(µ)
ERP + 1132; 1)112

subject to c (x; = O.

(30)

(31)

where f is the approximate residual vector, which is f = Pr Pr f and f = (P r)± Pr f in the case of collocation
and gappy POD, respectively. Ref. FBI contains additional details on conservative LSPG projection, including sufficient
conditions for feasibility of the associated optimization problems, and a posteriori error bounds.

C. Conservation constraints
To begin, we decompose the mesh M into subdomains, each of which comprises the union of control volumes. That

is, we define a decomposed mesh M of Ng-2( NEI) subdomains = joccN(Nn)51j, i c N(Ncl) with M := {Di

Denoting the boundary of the ith subdomain by ri := ani, we have ri ={x I x E e, Ve E Ci, i E N(18i1)} g U QiFj,
i E N(NK-1) with 8i C 8 representing the set of faces belonging to the ith subdomain We denote the full set of faces

within the decomposed mesh by 8 := uN1Ei c E. Note that the global domain can be considered by employing
M = Mglobal, which is characterized by Arn = 1 subdomain that corresponds to the global domain.

Enforcing conservation (1) on each subdomain in the decomposed mesh yields

frigi(1,t; µ ti ) • (1)050 = f siKt; i E j E N(Nn), (32)

where hi : Fj —> I d denotes the unit normal to subdomain nj. We propose applying the same finite-volume
discretization employed to discretize the control-volume conservation equations (Z) to the subdomain conservation
equations (32). To accomplish this, we introduce a "decomposed" state vector 2 E RN with N = No,, and elements

, 1
1-0-,j)(x; p) = - f ui(1; µ) di, i E j E N(Aff1), (33)
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where!' :N(nu) x N(Aril) —> N(R) denotes a mapping from conservation-law index and subdomain index to decomposed
degree of freedom. The decomposed state vector can be computed from the state vector x as

i(x) = Cx,

where C c ItrN has elements

Ik'
'
k) = n , g (34)

nil

where I is the indicator function, which evaluates to one if its argument is true, and zero if its argument is false.
Similarly, the velocity associated with the finite-volume scheme applied to subdomain conservation can be expressed

as

f (x; 1)= C f 4;10, (35)

such that subdomain conservation can be expressed as

ef(x;µ) = O. (36)

For the detailed explanation on the derivation of Eqs. a5)—(36), we refer readers Ref. [1.31, Section 4.1].

D. Manifold Least-squares Petrov—Galerkin projection
One of the shortcomings of the affine linear trial subspace used to compute the approximate state x in (28) is

that there exists some I such that z will contain some non-physical local phenomena such as regions of negative
density or temperature. Ref [13), Section VI.E] shows that ensuring z does not have non-physical local flow features
can significantly improve the robustness of LSPG and Galerkin ROMs. In this paper, we propose and demonstrate a
nonlinear trial manifold that approximates full-order model states without non-physical local features. We consider

x of the form
(t; = h(x°(µ) + 4:01(t; µ)), (37)

where I E S and S := {h(x°(µ) + 02)1 2 E RP denotes the nonlinear trial manifold from the extrinsic view. Here
h(i) E RN denotes the clipping function, which comprises a nonlinear mapping from a potentially non-physical linear
affine subspace fc E MP to a manifold on which quantities like density and temperature only take physical, non-negative
values.

Similarly to section steady manifold LSPG (M-LSPG) substitutes the approximation x into the FOM
steady-state equations (5), and subsequently minimizes residual in a weighted €2-norm, i.e., [

ic(it) = arg minAf (h(x°(µ) + 02(p)); 111)11 
2
, (38)

2 E P

We choose the clipping function h(i) to enforce p > 0 and T > 0 in the flowfield represented by I. The density
field ul is computed by

ul = max(ebili), (39)

where E1 > 0 is some number that should be very small relative to the free stream density and di is the density field
from 2. The expression T > 0 can be written in terms of the conserved quantities in (6) using (7) and (3) to derive the
following expression for temperature

1
cvT = E — 

2 
—(v .1; -)
"

Since cv > 0, T > 0 can be enforced in x by setting

-2 -2 -2
U5 = max (€5 + [u2 + U3 + U4] , U5), (40)

2ii

Note the presence of u1, since the density clipping function must be applied first. Therefore, h(1) is of the form h5(hi(i)),
where 2 = h 1(i) applies (39) to X", and x= h5(2) applies (40) to 2. Note that this is similar to the compositions of
nonlinear activation functions that make up neural nets, so this idea could be extended to the autoencoder neural net
architectures used as manifold approximations in [20].
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Density 0.070215 kg/m3

Velocity 2168.7 m/s

Mach Number 7.1

Angle of attack 2.0°

Temperature 231.91 K

Reynolds Number 10,000,000 1/ m

Table 1 Free stream flow conditions for the HiFIRE-1 for run 34 of the CUBRC wind tunnel experiments [M].

IV. Numerical experiments
The results presented below have been obtained using two codes being developed at Sandia National Laboratories,

namely SPARC and Pressic6 SPARC (Sandia Parallel Aerodynamics and Reentry Code) is a compressible CFD
code focused on aerodynamics and aerothermodynamics problems. It solves the compressible Navier—Stokes and
Reynolds-Averaged Navier—Stokes (RANS) equations on structured and unstructured grids using a cell-centered finite
volume discretization scheme [In. Its target use cases are transonic flows to support gravity bomb analyses and
hypersonic flows for re-entry vehicle analyses. SPARC also solves the transient heat equation and associated equations
for non-decomposing and decomposing ablators on unstructured grids using a Galerkin finite element method. One and
two-way multiphysics couplings exist between the CFD and ablation solvers within the code.

Pressio is an open-source C++11 header-only library aimed at enabling parallel, scalable, and performant ROM
capabilities to be adopted by any C++ application in a minimally intrusive manner. The main design principle behind
Pressio is that an application only needs to satisfy a minimal application programming interface (API). This consists of
exposing, for a given state x, time t, and parameters I, the velocity vector f(x, t; µ) and the action of the Jacobian matrix
f (x, t; ')/ax. Using C++ metaprogramming, Pressio detects and leverages the application's native data structures

(e.g., vector, matrix) to instantiate and run the desired ROM methods. A compile-time check is performed by Pressio to
verify if the target application satisfies the correct API, and if it does not, a compile time error is thrown. Exposing
from SPARC the required functionalities was relatively easy, since it involved the creation of a new adapter class and
no changes to the original SPARC code. We remark that while in this work we limit our attention to LSPG, the same
interface developed in SPARC can now be used to run any of the ROM methods supported in Pressio.

A. HIFiRE-1
We demonstrate LSPG and C-LSPG on a SPARC simulation of a wind tunnel test of the HiFIRE-1 (Hypersonic

International Flight Research Experimentation) vehicle. The baseline case we use in this paper is run 34 of the
experimental campaign undertaken at the CALSPAN University of Buffalo Research Center (CUBRC),[Z2]. The
corresponding free stream conditions are listed in table J. Additionally, turbulent transition is modeled by tripping the
boundary layer at x=0.35 m downstream from the leading edge of the vehicle.

Full-Order Model The HIFiRE-1 outer mold line geometry is axisymmetric. Because the angle of attack for run
34 is non-zero, the vehicle is modeled with the mesh shown in Figure y, which discretizes half of the flow field and
assumes flow symmetry about the center line.

The mesh has 2,031,616 cells, corresponding to a state-space size of 12,189,696 with nu = 6 since we are using the
Spalart-Allmaras turbulence model. The flow is solved using pseudo-time-stepping with a backward Euler time step
and scheduled increases in CFL number. The convergence criteria are a reduction in relative residual by 12 orders of
magnitude or 25000 pseudo-time steps. Near the baseline parameters, the solver converges in around 15,000 steps,
but convergence is slower at lower values of freestream density and velocity, resulting in only 5 orders of magnitude
convergence for some cases.

Figure g shows the flow field at the baseline conditions listed in table I. Noteworthy off-body flow features include a
bow shock near the nose, an expansion wave at the back end of the nose cone, and an oblique shock wave upstream of
the flare. Boundary layer transition is visible in the sudden increase in wall heat flux downstream of the leading edge.

Note that y+ is at most 1.0 for the baseline case, which implies sufficient resolution of the near wall portion of the
boundary layer for steady RANS equations. Additionally, the range of flow conditions used in this paper were chosen to

*https://github.com/Pressio
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Fig. 1 HIFiRE mesh.

Fig. 2 SPARC simulation of HIFiRE-1 at the freestream condition in table
number M, and the vehicle surface is colored by wall heat flux qwaii.

1. The flow field is colored by Mach

keep the Reynolds number below that of the baseline case, and to keep the leading shockwave from touching the inflow
boundary of the computational domain
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Validation studies found that the full order model computes heat fluxes similar to that observed by the wind tunnel
experiments on most of the vehicle, but underpredicts it at the beginning of the flare. This is a difficult region to predict
because flow separation at the cylinder-flare intersection is highly sensitive and is not well modeled by RANS turbulence
models.

Reduced-Order Model The snapshot matrix Xsnap is formed by FOM solutions with the ith column corresponding to
a FOM solution xi at parameter values pi. The reference state x°(p) is simply the mean of all snapshots. The basis (170
is defined as

4:10 = Dmax (41)

where D max E KripXN • s a diagonal matrix with the maximum absolute value of each conserved quantity along the
main diagonal and it) are the POD modes computed from the centered snapshot matrix normalized by D max ,

D mlax(Xsnap — x°)• (42)

This normalization is done because SPARC was run with dimensional quantities, as is standard practice for
hypersonic CFD codes, especially for cases with non-equilibrium effects. Normalizing snapshot data prior to computing
POD modes increases numerical robustness. This is because reducing the range of variable scales makes the normalized,
centered snapshot matrix (42) better conditioned than the centered, unscaled snapshot matrix (Xsnap — x°).

Because of the diagonal matrix in (41), the basis 4:1:0 is not orthonormal (0T41:0 ~ I), so projections have to be done
with the Moore-Penrose pseudo inverse of 0. Since Dmax is diagonal, the pseudo inverse is easy to compute as

1(µ) = (0)' (x(µ) — x°) = (DT Dm.1„x(x(µ) — x°). (43)

The selection of the weighting matrix A in (29) is crucial for the accuracy and speed of LSPG. We set A = D E RI"N,
where D E RNXN is defined as

D = i E N(na), j E N(AT0). (44)

This is a diagonal matrix whose elements correspond to the size of each control volume 1....ok I. It is found that this choice
of A vastly improves the convergence rate of Gauss—Newton iteration. This choice of A makes the LSPG residual
equivalent to that defined for the full order model. One possible reason for the improved convergence observed when
applying A is that the increase in relative weighting on the larger cells near the inflow and outflow boundaries of the
computational domain improves the accuracy of the ROM upstream of the leading shock. Since the no-slip condition
near the wall is the same at all flow conditions, it is implicitly enforced since all POD modes satisfy it. The inflow
conditions vary with free stream velocity and density, so these boundary conditions are not automatically satisfied at all
parameters. Therefore less relative weight on the smaller near-wall cells will not result in boundary condition violations,
while increased weight on the inflow cells will penalized boundary condition violations more heavily there. Similar
behavior with regard to residual weighting was observed by [2:1] for parametric LSPG for steady compressible flows.

Hyper-reduction is done by collocation using A = PrD E Rn"N , as in rE11]. The collocation points are chosen
randomly, for algorithmic simplicity and a low offline cost relative to other hyper-reduction approaches like GNAT
and DEIM. Note that the random cell selection algorithm was designed to ensure that the residual is sampled at each
boundary and in each mesh block, as suggested in [12].

Collocation is implemented by use of a sample mesh FR in which the steady residual f is only computed at the
collocation cells. This requires using a mesh that contains state data on all cells required to compute the conservation
equations. For a second-order finite volume scheme, this means that the sample mesh includes collocation cells, their
neighboring cells, and the neighbors of those neighbors, as shown in Figure for a two-dimensional structured mesh.

The ROM is solved using a Gauss Newton method instead of the pseudo time stepping used to solve the FOM, as
done in [r]. The initial guess for the ROM is computed by an inverse distance interpolation of the projected training
data = (0)+ (xi — x°), specifically [23, Algorithm 23].

We consider the LSPG, conservative LSPG (C-LSPG), and manifold LSPG (M-LSPG) formulations presented
in section  The non-linear least-squares problems arising from LSPG and M-LSPG are solved via a QR-based
Gauss-Newton, while the one stemming from C-LSPG is solved via normal equations. The Gauss-Newton solver
used is provided by Pressio. In both cases, the Gauss-Newton solvers are run until the relative residual L2 norm falls
below 10-4 or after 200 iterations. The conservation constraint is applied to the entire mesh, leading to 6 constraints,
one for each conserved quantity. For C-LSPG with hyper-reduction, we only consider the approximate conservation
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Fig. 3 Schematic showing cells included in a sample mesh. The residual f is sampled at the dark cells. The
neighboring cells (blue), and their neighbors (light blue) are included in the sample mesh since computing f in
the middle cell requires the states x at all highlighted cells.

constraint (31). Ref [13] found that using the approximate constraint had very little impact of the accuracy of C-LSPG.
Additionally, the approximate conservation constraint is less computationally expensive and easier to implement.

We measure the accuracy of the ROM with the following error metrics. Firstly, the state L2 error, defined as

llx(P) —140112 
ex = (45)

Ilx(11)II2
where x(µ) and 1(µ) are the full state computed with the FOM and some approximation with (28), respectively. The
vector "±(µ) is usually the ROM solution, but we also compute "±(µ) for other states as well. Secondly, we compute the
wall heat flux L2 error, defined as

_  4wall(/1)112 
(46)uwall

llgwan(P)112

where qwall(p) and 4waii(µ) are vectors containing the heat flux at all wall cell centers computed with the FOM
and some approximation with (28), respectively. Wall heat flux was chosen since heating is a key design driver for
hypersonic vehicles.

As in 122d, errors associated with the ROM initial guess are also presented for both state and heat flux errors. This
shows how much additional accuracy the ROM provides over a simple linear inverse-distance interpolation over the
basis 0, which is a form of surrogate model. Therefore, the comparison between the ROM solution and initial guess
can be interpreted as a comparison between a ROM and an inexpensive surrogate model.

Finally, the state error is also computed for the projection of the FOM solution on the basis (1),

iFom(1.1) E (1)(4))+(x(p) x°). (47)

This provides an lower bound for the ROM state error, since it is the most accurate representation of the FOM solution
(ft) possible with the basis 0. However, iFolvi(µ) is not necessarily a lower bound for fields derived from the state

vector like 4waii(µ), so we only compute Ex with iFom(µ) to compare with ROM solution and ROM initial guess
errors.

B. Tvo parameter ROM
Our first series of numerical experiments demonstrate a ROM parametrized by free stream velocity and density. The

parameters for the training data and test data are selected by two independent latin hypercube samplings, shown in
Figure 4.

The matrices Dmax and do are computed using the FOM solutions at the training points in Figure 4 Table 2 shows
that over 99% of the training sef s cumulative statistical energy can be captured with as few as 2 modes. We consider
three different ROM dimensions p = 2,4, 8, using the first 2,4, and 8 basis vectors, respectively.

Table shows that the scales of each conserved quantity range over 9 orders of magnitude, a very wide range,
highlighting the need to scale snapshots prior to computing POD modes for this case.
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Mode Cumulative
Statistical
Energy

1 0.92210

2 0.99188

3 0.99890

4 0.99971

5 0.99988

6 0.99993

7 0.99995

8 0.99997

Table 2 Cumulative energy for case 1 POD Basis -4).

Conserved
Variable

Maximum
Absolute
Value

Units

p 0.2695 kg Im3

pv1 97.52 kg/(m2s)

pv2 103.6 kg1(m2s)

pv3 101.7 kg1(m2s)

pE 164900 kg, II(m3)

POl 0.006415 kg2 /(w s)

Table 3 Case 1 conserved variable scales in Dmax.

LSPG and conservative LSPG without hyper-reduction A number of different types of ROMs were run on the test
set shown in Figure 4 and compared to FOM solutions computed on the same test set. Overall, it appears that C-LSPG
is considerably more accurate than LSPG for all three ROM sizes, p, that were tested.

For ROM dimension p = 2, Figure 54 shows that the Ex for C-LSPG is just under 1% for most cases, around 10
times more accurate than the initial guess in most cases. LSPG is similarly accurate for some cases but for case 1 it is
actually less accurate than the initial guess. Cases 2 and 10 fail for both LSPG and C-LSPG, due to non-physical initial
guesses that have local regions of negative temperature. Case 5 fails due to the solver reaching a state with local regions
of negative temperature. Case 7 fails for LSPG but succeeds for C-LSPG.

For ROM dimension p = 8, both LSPG and C-LSPG solutions have a lower Ex than the initial guess and no cases
fail. In cases 4, 10, and 11, the Ex for the C-LSPG solution is around 0.1%, about 100 times smaller than the Ex of
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Fig. 5 Relative L2 error of state vector, ex, and wall heat flux vector, Eq,”„ for different cases and ROM
dimensions, p. Case numbers correspond to the labels in Figure 4. FOM proj. refers to the error obtained by
projecting the FOM solution x(µ) on the basis 0 as in (47). White bars indicate cases that failed. Note that the
results for p = 4 had errors only slightly larger than those computed for p = 8.

around 10% for the corresponding initial guess. The C-LSPG solution is also around 10 times more accurate than the
p = 2 solutions. The large improvement in accuracy is due to better approximation offered by the p = 8 basis, as shown
by the large decrease in FOM projection error when p is increased to 8.

Figures 54 and 50 show that the state error, Ex , computed with C-LSPG is very close to the FOM projection error
when p = 2 and 8. This means that C-LSPG is nearly as accurate as possible for the basis. For p = 8, Ex is roughly one
order of magnitude lower for C-LSPG than LSPG. Results for p = 4 are similar to p = 8 and are not displayed in figure 5.

The error for derived quantities such as the wall heat flux error, eq,,„„, behaves similarly to Er , but can be
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Fig. 6 Relative residual L2 norms for LSPG and C-LSPG for different ROM dimensions p. Mean relative
residual history is plotted in black. Red X's mark iteration on which cases failed.

considerably larger, as shown in Figures 5b and  For both ROM dimensions, 8q,„”„ are up to 1-3% for C-LSPG
or as high as 10% for LSPG. In most cases, 8q„,,,„ is lower for C-LSPG than LSPG, but there are some exceptions,
including cases 1 and 3 for p = 2 and case 4 for p = 8. Additionally, Eq,,,a„ is actually smaller for p = 2 than p = 8
in some cases. In cases 4,6, and 8, C-LSPG computes a lower value of Eq,a„ with a lower ROM dimension. This
result is counter-intuitive, but is consistent with the fact that although LSPG guarantees a reduction in state error as p is
increased, there is no such guarantee for derived quantities like wall heat flux.

In addition to being more accurate, C-LSPG converges in far fewer Gauss-Newton iterations than LSPG, as shown
in Figure 6. For ROM dimension p = 2, Figure 6a shows the relative residual norm for LSPG reaches 10-4 in
roughly 50-100 iterations, while Figure 6h shows that C-LSPG converges to the same relative residual norm in only
10-15 iterations. For p = 8, the residual norm stops decreasing or increases for some LSPG cases after roughly 20
Gauss-Newton iterations, as shown in Figure 60. Figure 164 shows that the residual norms for C-LSPG with ROM
dimension p = 8 typically reached 10-4 after around 25-50 Gauss-Newton iterations, with some exceptions. The large
jumps in residual like that observed around iteration 50 are due to the solver reaching states that violate one of the
conservation constraints in (30). Note that these jumps were not observed for p = 4. Additionally, the C-LSPG residuals
for p = 4 converged at slightly faster rates that those for p = 8, but convergence was still slower than p = 2. The
degradation of nonlinear convergence rates as the ROM dimension is increased is likely due to the increased stiffness of
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(a) Sample mesh A. The residual is sampled at 2032 randomly selected cells (0.1% of all cells), requiring 49467 cells (2.4% of
all cells) to keep neighbors and neighbors of neighbors.

AY

(b) Sample mesh B. The residual is sampled at 813 randomly selected cells (0.04% of all cells), requiring 19901 total cells
(0.98% of all cells) to keep neighbors and neighbors of neighbors.

Fig. 7 HIFiRE-1 mesh with sample mesh cells highlighted. Note that sample mesh B is a subset of sample mesh
A.

the LSPG Jacobian for larger values of p; similar to the increased stiffness observed for Jacobians of finite element
discretizations as the element polynomial basis order is increased.

LSPG and conservative LSPG with hyper-reduction Although the C-LSPG ROM is accurate, it scales with the
number of degrees of freedom in the FOM, N. Recall from section TB] that hyper-reduction can break this scaling,
allowing for potentially inexpensive ROMs that only require f to be computed for a few cells. We demonstrate LSPG
and C-LSPG with hyper-reduction in the following section, for a single ROM dimension of p = 4. This ROM dimension
was chosen because it was only slightly less accurate than the p = 8 ROMs, but converged in fewer Gauss-Newton
iterations. We present results for two sample meshes, which we refer to as sample mesh A and sample mesh B, both of
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Fig. 8 Relative state and heat flux errors, Ex and Eq,”„ , for hyper-reduced LSPG and conservative LSPG
(C-LSPG) computed with ROM dimension p = 4 on both sample meshes. Case numbers correspond to the
labels in Figure 4 White bars indicate cases that failed.

which are shown in Figure 7. Sample mesh A contains roughly 2.4% of the full mesh, while sample mesh B contains
only 1% of the full mesh cells.

As for the full mesh ROM, C-LSPG is more accurate than LSPG, with lower values of Ex and Eq„,”„ in almost
all cases, as shown in Figure Recall that hyper-reduced C-LSPG is only approximately conservative since we also
compute the conservation constraint with the approximate residual PTPrf computed from the sample mesh. Despite
this, C-LSPG performs very well; although Ex is always larger than that computed for C-LSPG on the full mesh, it is
still roughly 1% or less for both sample meshes.

Figures and show that Eq,”„ is mostly smaller for C-LSPG solutions than LSPG solutions. Additionally, the
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Fig. 9 Relative residual L2 norms for hyper-reduced LSPG and C-LSPG computed with ROM dimension
p = 4 on both sample meshes. Mean relative residual history is plotted in black. Red X's mark iteration on
which cases failed.

hyper-reduced C-LSPG solution is much more accurate than the initial guess for a number of cases, but it is no more
accurate than the initial guess in others. Specifically, 8q,,,,„ for the hyper-reduced C-LSPG solution is 5 to 10 time
smaller than the initial guess error eqw,,,, for cases 3,4,10 and 11 on one or both sample meshes. Interestingly, all of
these cases lie near the edges of the parameter ranges over which the ROM is trained (see figure 4). On the other hand,
the initial guess qwa~l is similar or smaller than eq,„,,„ for the C-LSPG solution for cases 1,2, and 5. These cases are
among a group of cases for which the initial guess 8q,,,,‘„ is only around 1%, which also includes cases 7, 8, and 9.
These cases are mostly well inside the training set used for (1). This shows that hyper-reduced C-LSPG is most useful
near the edge of the parameter space, where surrogate models like the inverse-distance interpolation used to compute
the initial guess for the ROM have much larger (> 10%) errors.

Interestingly, the ROMs using sample mesh A are not consistently more accurate than those using sample mesh
B. This is despite the fact that mesh A more than twice as many cells as mesh B. Mesh A is more robust for LSPG;
some LSPG cases with sample mesh B fail. It should be noted that when a mesh coarser than mesh B was tested it was
observed to fail on most cases when the solver reaches some I corresponding to a non-physical approximate state I.
This suggests that using a sample mesh with more cells can make LSPG more robust.

Unlike LSPG, only one case fails on each mesh for C-LSPG. Additionally, 8„ is lower for C-LSPG solutions on
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Fig. 10 Speed-up of the ROM over full order model for LSPG and C-LSPG. Case numbers correspond to the
labels in Figure 4. White bars indicate cases that failed. ROM and FOM were both run on Intel Sandy Bridge
processors. The FOM cases were run with 128 cores, while the ROM was run on 16 cores, corresponding to a
single cluster node. Wall time speed ups can be obtained by dividing the results in this plot by 8. Note that ROM
times include a postprocessing step in which the flow field was computed on a mesh containing the near-wall
cells needed to compute wall quantities like heat flux, as in [12].

mesh B than mesh A for 7 out of the 12 test cases, despite the fact that mesh B is contained in mesh A. Some of this
counter-intuitive behavior might be due to the nonlinear solver convergence issues for C-LSPG with hyper-reduction
shown in Figure 9. Unlike the full mesh cases, LSPG on both sample meshes tends to converge faster than C-LSPG,
especially for sample mesh A, the larger sample mesh. Figure I9bl shows that most residuals converge slowly or stop
converging before reaching the target relative residual norm of 10-4. In contrast, only 2 cases fail to reach a relative
residual norm of 10-4 for C-LSPG on sample mesh B. Overall, it seems that the nonlinear solver is more efficient on
smaller sample meshes for LSPG and C-LSPG, when it does not encounter a non-physical state. However, it seems that
C-LSPG is more difficult to solve on the sample mesh, at least for the cases considered in this paper.

LSPG and C-LSPG performance To estimate the performance of LSPG and C-LSPG relative to the FOM, we
compared the CPU times of the p = 4 dimension ROMs with the FOMs for all 12 test cases. Figure IlOI shows that the
hyper-reduced ROMs are between 2,000 and 10,000 faster than the FOM at the test cases. As in Pi these speed-up
estimates include the time needed to compute qwaii as well as other wall quantities including pressure and friction
coefficients on a second post-processing mesh that only contained the two layers of cells nearest to the wall needed to
compute wall normal gradients. The size of this speed-up means that thousands of ROMs could be run with the same
computational resources required for one FOM, allowing many-query analyses to be applied to steady hypersonic CFD
cases like the one considered in this paper.

Figure I101 also shows that the full mesh ROM is hundreds of times faster than the FOM. This is partially because the
initial guess supplied to the ROM is more accurate than the uniform flow initial condition used by the FOM, but is also
related to the much smaller dimension of the LSPG minimization problem, p << N. The low relative cost of the full
mesh ROM means the GNAT hyper-reduction technique, which requires residual snapshots taken from full mesh ROMs,
may be feasible for steady flow problems.

Before proceeding, it should be emphasized that these speed-ups are just an estimate computed from single runs of
the ROM and FOM, each on a fixed number of processors. A more rigorous analysis would be comprised of strong
scaling tests for both the FOM and ROM, with speed-ups computed from the average CPU times of the peak performance
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Case # Free
Stream
Velocity
(m/s)

Mach
Number

0 1518.1 4.97

1 1648.2 5.40

2 1778.3 5.83

3 1908.5 6.25

4 2038.6 6.68

5 2168.7 7.10

Table 4 Training set free stream velocities and cor-
responding Mach numbers. All other free stream
conditions are equal to those in table

Case # Free
Stream
Velocity
(m/s)

Mach
Number

0 1583.2 5.19

1 1713.3 5.61

2 1843.4 6.04

3 1973.5 6.46

4 2103.6 6.89

Table 5 Test set free stream velocities and corre-
sponding Mach numbers. All other free stream con-
ditions are equal to those in table

FOM and ROM.
Also, recall that the convergence criteria for the FOM are much stricter than those for the ROM. The FOM

convergence criteria are relative residual norm of less than 10-12 (or 25,000 pseudo time steps) versus a relative residual
norm of less than 10-4 (or 200 Gauss-Newton iterations) for the ROM. However, even if one only ran the FOM to a
relative residual norm of 10-4, it would reduce the number of pseudo time steps to around 7,500; a third to a half of the
pseudo time steps required to get to 10-12. Making the rough assumption that wall time is proportional to the number of
pseudo timesteps, the ROM is still 600-3,000 times faster than the FOM, which is a sizable speed up.

C. Single parameter ROM with larger parameter range
In section MK a number of ROMs fail when the solver encounters an approximate state ± with local non-physical

conditions like negative temperatures. The same issue arises when the ROM is trained with fewer snapshots in a given
region of parameter space. We would like to maximize the range of parameters over which the ROM is accurate while
minimizing the amount of snapshots needed to train the ROM basis. However, it seems that the Gauss-Newton solver
is more likely to come across non-physical states when the basis is computed from snapshots that are taken further
apart in parameter space. These failures due to non-physical states could be addressed by using a line search or the
manifold-LSPG formulation with clipping discussed in section TIM.

The following experiment shows one example of this with a single parameter ROM. The single parameter we
consider is the free stream velocity. The training and test parameters are listed in tables 4 and 5, respectively. They are
both evenly spaced on an interval of free stream velocities [0.7v„„, v00], where voo is the baseline free stream velocity
listed in table T. This is a 50% increase in the velocity range considered in section IV.A, and it results in the leading
shock wave rotating approximately 2° over the training parameter range.

The matrices comprising the basis (1), Dmax and (I), are computed using the FOM solutions at the training points in
table 4. Table § shows that over 99% of the training set's cumulative statistical energy can be captured with as few as 2
modes. We set the ROM dimension to p = 4 for this study.

Table 7 shows that the scales of each conserved quantity range over 8 orders of magnitude, a very wide range,
highlighting the need to scale snapshots prior to computing POD modes for this case.

As in section ENT-.B, the accuracy of the ROM is measured by the state error Ex and wall heat flux error 6q,“„ defined
in (45) and (M), respectively. The ROM and FOM are computed on the test set in table 5 to compute these errors.

LSPG or C-LSPG both fail on 4 out of the 5 test cases when the solver finds an approximate state x with negative
temperatures. ROM solutions can be only be computed for the test case corresponding to the lowest Mach number,
M = 5.19.

The nonlinear solver can avoid non-physical states by conducting a line search at each Gauss-Newton iteration.
Pressio currently supports an (optional) backtracking line search method based on the Armijo rule  [124]. The search is
stopped if the rule is met, or if the absolute value of the correction is smaller than 10-14. Figure 1 la shows that Ex and
Eqw,„.„ computed by LSPG with a line search are around 4-5 times smaller than the initial guess errors.

Accuracy can be further improved by using M-LSPG with clipping. The clipping functions (39) and (M) are both
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Mode Cumulative
Statistical
Energy

1 0.97008

2 0.99284

3 0.99831

4 0.99980

5 1.0

6 1.0

Table 6 Cumulative energy for case 2 POD Basis (1).

M
a
c
h
 N
u
m
b
e
r
 

6.89

lili\NNNNN",\\N
6.46  

  NNN 
6.04  

/W9%/////.

5.61 _1•41""6
•.••

5 19 ims././77/AM

I.G_

LSPG

M-LSPG

FOM proj

10-4 10-3 10-2 10-1
State L2 Error

(a) Ex

Conserved
Variable

Maximum
Absolute
Value

Units

p 0.4217 kg/m3
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Table 7 Case 2 conserved variable scales in Dmax.
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Fig. 11 Relative state and heat flux errors, 6x and q Ql~for LSPG with a line search and M-LSPG, both with
ROM dimension p = 4. FOM proj. refers to the error obtained by projecting the FOM solution x(µ) on the
basis (1) as in (47).

applied with E1 = E5 = 10-6. Note that no regions of negative density were found, only negative temperature had to be
clipped implicitly by (40). Figure Il ll shows that M-LSPG has similar or smaller state errors than LSPG with the line
search for all cases. For the larger Mach number cases, M-LSPG is considerably more accurate than LSPG with the line
search. Unlike the line search, Ex for the M-LSPG solution is very close to the FOM projection.

The superior accuracy of M-LSPG is achieved because it can minimize the residual much more than LSPG with
line search, as shown in Figure I12. The residual norms are identical for the M = 5.19 case, because neither the line
search and clipping functions are active for this case. For all other cases, the line search is able to backtrack from
solution updates that lead to non-physical states, but the backtracking eventually results in a correction with a magnitude
of 10-14, causing the relative residual norm to level out around 0.1 or 0.3 for the M > 5.19 test cases. The clipping
function OD keeps M-LSPG away from states with negative temperatures, resulting in residual convergence rates that
are even faster than that of the M = 5.19 case.

V. Conclusions
In conclusion, LSPG ROMs can compute accurate approximations of conserved quantity fields (the state vector) and

derived quantity fields such as wall heat flux for steady-state flows around a hypersonic flight vehicle at a fraction of the
cost of the full order model.

The results of section MBishow that conservative LSPG in particular is accurate and fairly robust when trained
with sufficient snapshot data over a parameter range. The 2-parameter C-LSPG ROM state errors are 0.1% and heat
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flux errors were at most 1-3%. Hyper-reduction via collocation with random cell sampling maintains a high level of
accuracy for the state vector and derived fields like wall heat flux while increasing performance substantially over the
full mesh ROM. This is particularly true for C-LSPG, despite the crude approximation of the conservation constraint
by collocation. Hyper-reduced ROMs are thousands of times faster than the FOM, which means they could make
many-query analyses feasible for large steady state hypersonic flow simulations.

One important observation is that the utility of the ROM depends on the region of the parameter space it is used in.
The ROM solution is substantially more accurate than the initial guess for cases on the edge of the training set parameter
space, where state and heat flux errors are around 5-10 times off the initial guess, which was as high as 10-20% for some
cases. However, the initial guess can be sufficiently accurate for regions of parameter space that are well inside the basis
training set. The initial guess is computed with an low cost surrogate model: inverse-distance interpolation over POD
modes.Therefore, the most efficient way to compute many approximate solutions as part of a many-query analysis will
likely involve computing ROMs in some parts of parameter space, and surrogate models in other regions.

Finally, we find that using a naive Gauss-Newton implementation with a linear basis can result in the solver finding
non-physical solutions with regions of negative temperature. These non-physical states can be avoided by using a line
search or a nonlinear basis which does not allow for negative densities or temperatures. The increased robustness
achieved by avoiding non-physical states will enable ROMs to be trained with fewer snapshots and/or trained over wider
parameter ranges.

There are a large number of future research directions that follow up on the results presented in this paper. Firstly,
M-LSPG needs to be tested with hyper-reduction and the conservation constraint. Secondly, to apply M-LSPG projection
to models of flight vehicles that operate in flight regimes where non-equilibrium effects are important, appropriate
clipping functions need to be derived for non-perfect gas models. Third, although collocation with random cell selection
works well, there are likely better hyper-reduction strategies that can improve upon the accuracy and/or performance
presented in this paper. The speed-ups obtained for C-LSPG on the full mesh suggest that GNAT hyper-reduction may
be feasible for steady state hypersonic flow simulations.

The poor nonlinear convergence rates observed for some LSPG and C-LSPG cases suggests that more work is
needed on the LSPG and C-LSPG solvers. In particular, better preconditioning strategies may help improve nonlinear
convergence rates. Additionally, finding a more accurate initial guess than the inverse-distance interpolation could
substantially improve nonlinear convergence rates.

With further improvements in robustness, accuracy and performance, ROMs will enable large-scale UQ studies and
other many-query analyses of hypersonic CFD models, enabling further advances in our understanding of CFD model
uncertainties and vehicle design.
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