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2l Density Measurements of Thin-Films

Thin-film explosives provides us a pathway to fundamentally understand reactive
material detonation phenomena. However, the density of thin-film explosives differs
trom the bulk counterpart and our models depend on accurate density measurements.
Problem: Non-destructive density measurements of thin-film explosive material.
Goal: Non-destructive density measurements of thin-film.

110 yum PETN-FS 35 um PETN-AI-Si
180 pm

Porous sample

0 Scale bar is 2.5

Is the density uniform?

Challenges:
- High uncertainty for thin-films

- Non-uniform growth E. Ziade




31 Traditional Density Measurements

1) Deposit thin-film energetic
material on substrate with or
without an interface layer

<2008

Interface layer

2) Measure step height

1

Interface layer

Challenges:

3) Measure mass

Interface layer

122.273 mg

4) Etch film and measure mass

Interface layer

120.494 mg

Amass

P

B Volume

- Need high accuracy scale
- 100 pg error ~ 10% error in
density

110 ym PETN-FS 35 um PETN-AI-Si

180 pm

Scale bar is 2.5mm
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41 Thermal Waves for Density Measurements
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1) Periodic laser heats the sample (pump).

2) Surface temperature lags behind heat source because sample needs

time to heat up.
3) Laser monitors surface temperature (probe).

[1] Schmidt, A. J., Cheaito, R., & Chiesa, M. (2009). A frequency-domain thermoreflectance method for the characterization of thermal properties. The Review of Scientific
Instruments, 80(9), 94901.

[2] Yang, J., Ziade, E. et al. (2014), Thermal conductance imaging of graphene contacts. Journal of Applied Physics, 116(2), 023515.

[3] Ziade, E., et al. (2016), thickness dependent thermal conductivity of gallium nitride. Applied Physics Letters, 110(3), 031903.
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51 Thermal Waves for Density Measurements
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pCp: Volumetric heat capacity

K, : Cross-plane thermal conductivity
K;: In-plane thermal conductivity

d: Layer thickness

G: Thermal boundary conductance
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6l Frequency Domain Thermoreflectance (FDTR)
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sl Samples

4 Indomethacin samples

Au/Ti

Indomethacin

Sio2

AU/Ti

Indomethacin

5 PETN samples

Au/Ti

PETN

Nominal
Thickness:
10 pm

Nominal
Thickness:
1 pm to 100 pm




9l Thickness measurements — Indo-SiO2
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Sensitivity [0(0)/0In(z)] (Degrees)

Sensitivity Plots: Number of floated parameters
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11l FDTR Data Analysis

2019-11-25- Coating -2-Gold-Indomethacin-SiO2-1232-Indo-1um-SiO2-Fit-Type-2
p Cp 1y = 2.47 £ 0.05, 0, = 0.015 , o5 = 0.051
p Cp (3 = 1.49 £ 0.04, 0, = 0.032 , o5, = 0.03
k(1 2 = 0.15 £ 0.00, o, = 0.0014 , o5 = 0
Gy =762 £1.69, 0, =041, o5, = 1.6
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120 Thickness measurements — Indo-Silicon

Situm

Y Position (mm)

Si
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Sensitivity [0(6)/0In(z)] (Degrees)

Sensitivity Plots

Gold-Indomethacin-Silicon-sensitivity
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141 FDTR Data Analysis

2019-11-25- Coating -2-Gold-Indomethacin-Silicon—1232-Indo-1um-Si-Fit-Type-2
p Cp (o) = 1.49 £ 0.06, 0, = 0.013 , o = 0.061
ki, 1) = 199.85 £ 11.00, 0p = 1.5 , o = 11
Gy = 7.00 £ 2.25, 0, = 0.27 , oy = 2.2
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151 Density Measurements of Encased Indomethacin

FDTR measurements of density of Indomethacin thin-films
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161 Density Measurements of Encased PETN

FDTR measurements of density of PETN thin-films
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FDTR measurements of density of Indomethacin thin-films
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Thank you!

Questions!

This work was supported in part, at the Center for Integrated Nanotechnologies, an Office of Science User
Facility operated for the U.S. Department of Energy (DOE) Office of Science by Los Alamos National
Laboratory (Contract DE-AC52-06NA25396) and Sandia National Laboratories (Contract DE-NA-0003525) and
the Laboratory Directed Research and Development program at Sandia National Laboratories. Sandia
National Laboratories is a multi-program laboratory managed and operated by National Technology and
Engineering Solutions of Sandia, LLC., a wholly owned subsidiary of Honeywell International, Inc., for the
U.S. Department of Energy's National Nuclear Security Administration under contract DE-NA-0003525.

Certain commercial equipment, instruments, or materials are identified in this presentation in order to
adequately describe the experimental procedure. Such identification does not imply recommendation or
endorsement by the authors or Sandia National Laboratories, nor does it imply that the materials or
equipment identified are the only or best available for the purpose.




19l FDTR Data Analysis

2019-11-21- Coating -2-Gold-Indomethacin-Si02-1232-Indo-1um-SiO2-Fit-Type-2
p Cp 1y = 2.47 £ 0.07, 0, = 0.02 , o5 = 0.064
p Cp 2 = 150 £ 0.12, 0, = 0.024 , o = 0.12
ki, 2 = 0.15 £ 0.01, 0, = 0.001 , o5¢ = 0.01
Gy = 941 £ 2.59, 0, = 0.5 , o5, = 2.5
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200 FDTR Data Analysis

2019-11-21- Coating -2-Gold-Indomethacin-Silicon—1232-Indo-1um-Si-Fit-Type-2
p Cp 2y = 1.50 £ 0.13, 0, = 0.014 , o = 0.13
Gy = 851 £ 6.24, 0, = 0.59 , o5 = 6.2
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210 FDTR Data Analysis

2019-11-21- Coating -2-Gold-Indomethacin-Si02-1232-Indo-1um-SiO2-Fit-Type-2
p Cp (99 = 1.50 £ 0.37, 0, = 0.018 , oy = 0.37
k(L. 2 = 0.15 + 0.13, 0, = 0.0031 , o, = 0.13

Gy = 9.60 + 37.30, 0, = 0.91 , os = 37
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21 Verification and Validation

FDTR « and pCp measurements of samples
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Verification and Validation
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Y Position (mm)

Silicon

Si10um

X Position (mm)

H (um)




250 FDTR Data Analysis

2019-11-21- Coating -2-Gold-Indomethacin-Silicon—1232-Indo-1um-Si-Fit-Type-2
p Cp @ = 1.50 £ 0.13, 0, = 0.014 , o5, = 0.13
Gy = 8.51 + 6.24, 5, = 0.59 , o = 6.2
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2019-10-15- Coating -2-Gold-Indomethacin-Silicon-1229-Indo-10um-Si-Fit-Type-2
pCp 2 = 1.58 + 0.24, 0, = 0.17 , o = 0.17
ki, 9y =0.21 £ 0.05, 0, = 0.02 , o5 = 0.05

G(1) = 6.66 + 0.61, 0, = 0.45 , o5 = 0.4
) i e e el L e L o data |
—— Model
10+ |
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o0
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= -50 g
~
-60 [- 8
-l pC ki K d i
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102 104 10° 108
Frequency (Hz)
Thickness k cross 2 rhoCp Density
mean std mean std mean std pop mean std
1um SiO2 1040 55 0.16 0.02 1.52 0.038 1305 + 33
1um Si 1080 170 0.18 0.048 1.55 0.011 1330 +9
10um Si 0.21 0.05 1.58 0.17 1356 + 146
100um Si 0.18 0.04 1.64 0.076 1408 + 65




271 Measurement
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28 . ) .
Variance-Covariance Matrix
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[1] George, A., F. Seber, and C. J. Wild. "Nonlinear regression." (2003).

[2] Yang, Jia, Elbara Ziade, and Aaron J. Schmidt. "Uncertainty analysis of thermoreflectance measurements." Review of Scientific Instruments 87.1 (2016): 014901.

[3] Walpole, Ronald E., et al. Probability and Statistics for Engineers and Scientists , 9th. Vol. 6. Pearson, January, 2011. Chapter 4.1 & 4.2. E. Ziade
[4] Myers, Raymond H. Classical and modern regression with applications. No. 04; QA278. 2, M8 1990.. 1990. Chapter 3




21 Other Density Measurement Techniques

Grazing X-ray Reflection [1] Rutherford Backscattering [ 3,4]
- Sample roughness < 2 nm RMS - High energy ions (2.0 MeV He?%*)
- Growth interface must be - Destructive

atomically smooth

Spectral Ellipsometry [2] lon polished SEM cross-section

- Sample roughness < 10 nm RMS - 2D measurement

- Optically transparent at probing - Sample can melt during ion-
wavelengths polishing

[1] Toney, M.F., Brennan S., (1989). Structural depth profiling of iron oxide thin films using grazing incidence asymmetric Bragg x-ray diffraction.
Journal of Applied Physics, 65(12), 4763.

[2] Morral, A.F., Cabarrocas, P. R. (2004). Structure and hydrogen content of polymorphous silicon thin films studied by spectroscopic
ellipsometry and nuclear measurements. Physical Review B, 69(12), 125307.

[3] Jo M-H., Hong, J-K., Park H-H., Kim, J-J., Hyun, S-H. (1997). Evaluation of SiO2 aerogel thin film with ultra low dielectric constant as an
intermetal dielectric. Microelectronic Engineering, 33, 343-348.

[4] Samuelsson, M., Lundin, D., Jensen, J., Raadu, M.A., Gudmundsson, J.T., Helmersson, U., (2010). On the film density using high power
impulse magnetron sputtering. Surface & Coating technology, 205, 591-596.
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2019-10-15- Coating -2-Gold-Indomethacin-Silicon-1229-Indo-10um-Si-Fit-Type-2
pCp 2 = 1.58 + 0.24, 0, = 0.17 , o = 0.17
ki, 9y =0.21 £ 0.05, 0, = 0.02 , o5 = 0.05

G(1) = 6.66 + 0.61, 0, = 0.45 , o5 = 0.4
) i e e el L e L o data |
—— Model
10+ |
=20 - 4
-30 i
o0
ﬁ -40 |- n
%
= -50 g
~
-60 [- 8
-l pC ki K d i
B 2481 183.7 1 158.7 6.211
1416 @ 0.2277 1 le+04 >
-80 1.631 147.8 1 5e+05 1
6.72 6.02 21.6 0 0
90+ k|
102 104 10° 108
Frequency (Hz)
Thickness k cross 2 rhoCp Density
mean std mean std mean std pop mean std
1um SiO2 1040 55 0.16 0.02 1.52 0.038 1305 + 33
1um Si 1080 170 0.18 0.048 1.55 0.011 1330 +9
10um Si 0.21 0.05 1.58 0.17 1356 + 146
100um Si 0.18 0.04 1.64 0.076 1408 + 65




311 Encased Low-k Films

FDTR Density (kg/m”3) percent of bulk

mean std mean std
T1 09 (High) 1760 + 269 99% +15%
T3 08 (low) 1630 + 148 92% + 9%
C1 23 (low) 1565 + 287 88% + 18%
C5 04 (low) 1621 + 213 91% +13%
C5 01 (hgih) 1732 + 222 97% +13%
Gravimetric Density (kg/m”3) percent of bulk

mean std mean std
Nominally High 1749 18 98%
Nominally low 1568 16 88%
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