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2 Density Measurements of Thin-Films

Thin-film explosives provides us a pathway to fundamentally understand reactive

material detonation phenomena. However, the density of thin-film explosives differs

from the bulk counterpart and our models depend on accurate density measurements.

Problem: Non-destructive density measurements of thin-film explosive material.

Goal: Non-destructive density measurements of thin-film.
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Is the density uniform?

Challenges:

- High uncertainty for thin-films

- Non-uniform growth E. Ziade



3 Traditional Density Measurements

1) Deposit thin-film energetic
material on substrate with or
without an interface layer

Thin-film

Interface layer

Substrate

3) Measure mass

Thin-film

Interface layer
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,Amass
= Volume

Challenges:
- Need high accuracy scale

- 100 pg error - 10% error in
density
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4 Thermal Waves for Density Measurements
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[1] Schmidt, A. J., Cheaito, R., Et Chiesa, M. (2009). A frequency-domain thermoreflectance method for the characterization of thermal properties. The Review of Scientific
Instruments, 80(9), 94901.
[2] Yang, J., Ziade, E. et al. (2014), Thermal conductance imaging of graphene contacts. Journal of Applied Physics, 116(2), 023515.
[3] Ziade, E., et al. (2016), thickness dependent thermal conductivity of gallium nitride. Applied Physics Letters, 110(3), 031903. E. Ziade



5 Thermal Waves for Density Measurements
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pCp: Volumetric heat capacity
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6 Frequency Domain Thermoreflectance (FDTR)
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1
8 Samples

4 lndomethacin samples

Au/Ti

lndomethacin
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Indomethacin
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9 Thickness measurements — Indo-Si02
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0 Sensitivity Plots: Number of floated parameters
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11 FDTR Data Analysis

2 0 1 9- 1 1- 2 5- Coating -2-Gold-Indomethacin-Si02-1232-Indo-lum-Si02-Fit-Type-2
p Cp (1) = 2.47 ± 0.05, crp = 0.015 , ufit = 0.051
p Cp (2) = 1.49 ± 0.04, up = 0.032 , Grfit = 0.03

= 0.15 ± 0.00, up = 0.0014 , = 0
G(i) = 7.62 ± 1.69, up = 0.41 , ufit = 1.6
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1 2 Thickness measurements — Indo-Silicon
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13 Sensitivity Plots
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14 FDTR Data Analysis

2019-11-25- Coating -2-Gold-Indomethacin-Silicon-1232-Indo-lum-Si-Fit-Type-2
p Cp (2) = 1.49 ± 0.06, up = 0.013 , afit = 0.061

1) = 199.85 ± 11.00, up = 1.5 , afit = 11
G(l) = 7.00 + 2.25, up = 0.27 , afit = 2.2
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1 5 Density Measurements of Encased Indomethacin

FDTR measurements of density of Indomethacin thin-films

Bulk ry-Indomethacin: 1.37 [g cm-3]
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16 Density Measurements of Encased PETN

FDTR measurements of density of PETN thin-films
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FDTR measurements of density of Indomethacin thin-films

Bulk y-Indomethacin: 1.37 [g cm-3]
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18 1

Thank you!

Questions?

This work was supported in part, at the Center for Integrated Nanotechnologies, an Office of Science User
Facility operated for the U.S. Department of Energy (DOE) Office of Science by Los Alamos National
Laboratory (Contract DE-AC52-06NA25396) and Sandia National Laboratories (Contract DE-NA-0003525) and
the Laboratory Directed Research and Development program at Sandia National Laboratories. Sandia
National Laboratories is a multi-program laboratory managed and operated by National Technology and
Engineering Solutions of Sandia, LLC., a wholly owned subsidiary of Honeywell International, Inc., for the
U.S. Department of Energy's National Nuclear Security Administration under contract DE-NA-0003525.

Certain commercial equipment, instruments, or materials are identified in this presentation in order to
adequately describe the experimental procedure. Such identification does not imply recommendation or
endorsement by the authors or Sandia National Laboratories, nor does it imply that the materials or
equipment identified are the only or best available for the purpose.



19 FDTR Data Analysis

2019-11-21- Coating -2-Gold-Indomethacin-Si02-1232-Indo-lum-Si02-Fit-Type-2
p Cp (1) = 2.47 ± 0.07, up = 0.02 , ufit = 0.064
p Cp (2) = 1.50 ± 0.12, up = 0.024 , CIfit = 0.12
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20 FDTR Data Analysis

2019-11-21- Coating -2-Gold-Indomethacin-Silicon-1232-Indo-lum-Si-Fit-Type-2
p C (2) = 1.50 ± 0.13, up = 0.014 , afit = 0.13
G(i) = 8.51 + 6.24, up = 0.59 , o-fit, = 6.2
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21 FDTR Data Analysis

2019-11-21- Coating -2-Gold-Indomethacin-Si02-1232-Indo- lum-Si02-Fit-Type-2

p Cp (2) = 1.50 ± 0.37, up = 0.018 , afit = 0.37
k(±, 2) = 0.15 ± 0.13, up = 0.0031 , afit = 0.13
G(i) = 9.60 ± 37.30, up = 0.91 , afit = 37
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22 Verification and Validation

3.5

3
2

2.5
crS

I • 1.5

E 1

o

0.5

0

FDTR IS and pCp measurements of samples

•

..
.. Sucrose

• CIO
lndomethacin

 Quar

• .......

Low-k mater a

10-1
1 1 1 1 1 

10o

•

•
•
•
.
.
• 
.

.••••
Salts 

t.

101

❑

SapPhire

i Thin film

415

Silica 0

102

Gol I

Diamond

Au
G si
• Si02

O Sapphire
• Diamond

KCI
KBr
NaCI

ID Sucrose
❑ lndomethacin
El SiN
El 316SS
• FDTR fit

(b) Bulk Samples Embedded Thin-Films

1 0
3

Thermal Conductivity (W m-1 K-1)

1 0
4 105

E. Ziade



23 Verification and Validation
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24 Silicon
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25 FDTR Data Analysis •
2019-11-21- Coating -2-Gold-Indomethacin-Silicon-1232-Indo-lum-Si-Fit-Type-2

p C p (2) = 1.50 ± 0.13, up = 0.014 , ufit = 0.13
G(l) = 8.51 ± 6.24, up = 0.59 , c r fit = 6.2
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26 1

2019-10-15- Coating -2-Gold-Indomethacin-Silicon--1229-Indo-10um-Si-Fit-Type-2
p Cp (2) = 1.58 + 0.24, up = 0.17 , ufit = 0.17
k(i, 2) = 0.21 + 0.05, up = 0.02 , ufit = 0.05
G(i) = 6.66 + 0.61, up = 0.45 , afit = 0.4
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Thickness k cross 2 rhoCp Density

mean std mean std mean std pop mean std

lum Si02 1040 55 0.16 0.02 1.52 0.038 1305 ± 33

lum Si 1080 170 0.18 0.048 1.55 0.011 1330 ± 9

10um Si 0.21 0.05 1.58 0.17 1356 ± 146

100um Si 0.18 0.04 1.64 0.076 1408 ± 65



27 Measurement
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28 1
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[1] George, A., F. Seber, and C. J. Wild. "Nonlinear regression." (2003).
[2] Yang, Jia, Elbara Ziade, and Aaron J. Schmidt. "Uncertainty analysis of thermoreflectance measurements." Review of Scientific Instruments 87.1 (2016): 014901.
[3] Walpole, Ronald E., et al. Probability and Statistics for Engineers and Scientists , 9th. Vol. 6. Pearson, January, 2011. Chapter 4.1 & 4.2.
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1
29 Other Density Measurement Techniques

Grazing X-ray Reflection [1] 
- Sample roughness < 2 nm RMS
- Growth interface must be

atomically smooth

Spectral Ellipsometry [2] 
- Sample roughness < 10 nm RMS
- Optically transparent at probing

wavelengths

Rutherford Backscattering [3,4] 
- High energy ions (2.0 MeV He2+)
- Destructive

Ion polished SEM cross-section 
- 2D measurement
- Sample can melt during ion-

polishing

[1] Toney, M.F., Brennan S., (1989). Structural depth profiling of iron oxide thin films using grazing incidence asymmetric Bragg x-ray diffraction.
Journal of Applied Physics, 65(12), 4763.
[2] Morral, A.F., Cabarrocas, P. R. (2004). Structure and hydrogen content of polymorphous silicon thin films studied by spectroscopic
ellipsometry and nuclear measurements. Physical Review B, 69(12), 125307.
[3] Jo M-H., Hong, J-K., Park H-H., Kim, J-J., Hyun, S-H. (1997). Evaluation of Si02 aerogel thin film with ultra low dielectric constant as an
intermetal dielectric. Microelectronic Engineering, 33, 343-348.
[4] Samuelsson, M., Lundin, D., Jensen, J., Raadu, M.A., Gudmundsson, J.T., Helmersson, U., (2010). On the film density using high power
impulse magnetron sputtering. Surface Et Coating, technology, 205, 591-596.
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30 1

2019-10-15- Coating -2-Gold-Indomethacin-Silicon-1229-Indo-10um-Si-Fit-Type-2
p Cp (2) = 1.58 + 0.24, up = 0.17 , ufit = 0.17

0

-10

-20

-60

-70

-80

-90
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G(i) = 6.66+ 0.61, up = 0.45 , ufit = 0.4
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Thickness k cross 2 rhoCp Density

mean std mean std mean std pop mean std

lum Si02 1040 55 0.16 0.02 1.52 0.038 1305 ± 33

lum Si 1080 170 0.18 0.048 1.55 0.011 1330 ± 9

10um Si 0.21 0.05 1.58 0.17 1356 ± 146

100um Si 0.18 0.04 1.64 0.076 1408 ± 65



31 Encased Low-k Films

FDTR Density (kg/m^3) percent of bulk

mean std mean std

T1_09 (High) 1760 ± 269 99% ± 15%

T3_08 (low) 1630 ± 148 92% ± 9%

C1_23 (low) 1565 ± 287 88% ± 18%

C5_04 (low) 1621 ± 213 91% ± 13%

C5_01 (hgih) 1732 ± 222 97% ± 13%

Gravimetric Density (kg/m^3) percent of bulk

mean std mean std

Nominally High 1749 18 98%

Nominally low 1568 16 88%
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