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SUMMARY
Multi-physics investigations of the physiochemical state of Earth's interior typically include electromagnetic
interrogation methods because of their high sensitivity to pore-scale fluids and the strong contrasts in electrical
conductivity associated with contrasts in lithology and the presence of volumetrically small, but electrically
conductive mineral phases on grain boundaries. Efficient methods for computing Earth's three-dimensional
electromagnetic response are cornerstone to such investigations as they inform experiment design, provide a
platform for computational hypothesis testing, and are the primary computational engine (and bottleneck) for
three-dimensional inversion. In this presentation we report recent advances in the Cartesian A-Phi method
(Weiss, Computers and Geosciences, 2013) where Lorenz-gauged potentials efficiently sparsified the linear
system of equations resulting from finite volume discretization of Maxwell's equations to yield solutions over
frequencies spanning 9-decades of magnitude, including dominantly diffusive, wave, and mixed propagation
regimes. Here, a similar analytic framework has been cast in terms of a generalized variational problem, and
more specifically, a finite element solution for unstructured discretizations. Such discretizations allow for spatially
variable model resolution that was simply absent in the earlier, Cartesian implementation. We demonstrate,
again, how the Lorenz-gauge leads to matrix sparsification and, ultimately, reduced computational burden when
compared with the Coulomb gauge. These, and other, computational innovations will be exercised through
exemplar problems derived from near-surface studies of wetland environments where the subsurface electrical
contrasts are extreme and the scales in relevant model features are incompatible with Cartesian discretization.

1. Problem Setup
We are interested in developing and analyzing computationally efficient methods for solving the ultra-broadband, full frequency spectrum, Maxwell's equations for
applications in subsurface interrogation and characterization. The analysis therefore applies to low-frequency, inductive methods where the effects of dielectric material
properties are dominated by the Ohmic conductivity, to high-frequency radar applications where the converse holds, and to mixed diffusion/propagation problems.

Our principal simplifying assumption for this study is that magnetic
permeability /Jo is assumed constant, whereas the complex electrical
conductivity 8- is a function of frequency, w, ohmic (linear) conductivity a,
and electric permittivity, E.

Because of the divergence-free property of magnetic induction vector, B, it
may by expressed as the curl of a vector potential, A. This results, via
Faraday's Law, in the electric field, E, being represented as the sum of the
frequency-scaled vector potential and the negative gradient of the electric
scalar potential •I•. Notice in the static limit (w =0), E reduces to the familiar
form for DC resistivity analysis.

Substituting these definitions for B = H and E into Ampere's Law with
sourcing term Js yields the starting, "curl-curl" equation for the analysis that
follows. For convenience, the squared complex wavenumber is defined
accordingly as k2 = iw,u08- .

2. Gauging for Uniqueness
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By introducing the vector and scalar potentials above, the 3 coupled equations (for
each vector component of the curl-curl equation) are insufficient to guarantee
uniqueness of our, now, 4 degrees of freedom. Hence, an auxiliary condition, the
gauge condition, is introduced. One choice is the Coulomb gauge:V • A = 0

In the context of nodal finite element analysis, this is perhaps the most popular
approach (Biro and Preis, 1989, Everett and Schultz, 1996; Badea et al., 2001,
Puzyrev et al., 2013) and the strategy is to add -grad(div(A)) to the curl-curl
equation, which by identity simplifies to a vector Laplacian equation provided the
gauge condition is met.
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The gauge condition is met by re-introducing the current-continuity condition
along with appropriate boundary conditions for the potentials at the limits of the
analysis domain.

V • (iw 8-A o-v(D) = v • Js

Note that in the first equation, the gradient of the scalar potential (red box)
couples all 4 unknowns together, whereas in the latter equation, it's the divergence
of a A (red box). Except in circumstances where the potentials are constant, these
coupling terms are non-zero throughout the analysis domain.

Other variants of the Coulomb gauge approach include mixed mimetic edge/nodal
elements where the vector potential is projected onto the space of divergence-free
Whitney elements, thereby minimizing the troublesome null space of the curl
operator while simultaneously satisfying the Gauge condition by construction
(Ansari and Farquharson, 2014; Ansari et al., 2017).
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3. The Lorenz Gauge
An alternative choice of gauge is the Lorenz gauge (no 'V), V • A —poo-(1), which
has (at least) one attractive property, not shared by the Coulomb Gauge.
Expanding the curl-curl operator in the terminal equation from Section 1, above,
the vector Laplacian operator is again introduced along with the grad-div operator.
Substitution of the Lorenz gauge condition eliminates the grad(div(A)) term,
replacing it with a grad(4130), which in turn modifies the coupling term (green box).
Notice that in contrast to the case with Coulomb Gauge (Section 2), the coupling
term is now restricted spatially to regions where the conductivity gradient is non-
zero. In other words, for Earth models consisting of piecewise blocky conductivity
sub-regions, this equation is effectively the (well behaved) vector Helmholtz
equation, sourced, in part, by internal boundary conditions for each of these sub-
regions.
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Similarly, re-introduction of the current-continuity condition and substitution of the
Lorenz gauge condition therein, brings forth an elliptic equation for the electric
potential, coupled as before to the vector potential through the electrical
conductivity gradient (green box).
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4. Lorenz Gauge Coupling

tentials

To determine whether the locality of the Lorenz-gauged coupling terms is preserved in a finite element formulation,
we take the usual step of casting them into weak form, with test functions denoted by a tilde and unit direction
vectors by n, x, y and z. Focusing on the coupling terms from the vector Helmholtz equation, with the prescription
that conductivityae is piecewise constant over elements Qe with boundaries Fe, this term reduces to a sum of surface
integrals over interior element boundaries plus the boundary condition on F of the domain Q.
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Expansion of element-wise surface integral terms over a given facet e with nodal basis functions 0, shows that the
sum of subsequent integrations over a given facet between adjacent elements of equal conductivity is identically
zero due to the change in sign of the unit normal vector, n.

A ux v y wz

fre ge
ftx fi)y fivz n nxx nyy ± frizz

n • A) ClI'= ae (72 nyv nzriv) dF
re

(ue T ihT)
e e

fre
ge (13, dF

5. Coulomb Gauge Coupling
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For completeness, the coupling terms of the Coulomb gauge are further analyzed to see
determine whether they, too, can be simplified. As is the case with the Lorenz gauge, a sum of
surface integrations over elements (with outward pointing normal) can be partitioned from the
initial integration. And like before, subsequent integrations over neighboring elements with equal
conductivity results in cancellation of these terms. However, the residual from this partitioning is
yet another volume integration over the complete computational domain. Since there is no
requirement that the test functions A adhere to some gauge or that V•1) = 0 , these volume
integrals persist in the final finite element matrix assembly, resulting in a much greater density of
non-zero coupling matrix elements than one would find in the Lorenz gauged case (except in the
pathological case where each element differs in conductivity from its neighbors).

A similar cancellation occurs for the coupling terms in the current-conservation equation, where we find the element-wise coupling matrix (yellow box) to simply be the transpose of the coupling matrix just derived.
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6. Numerical Results
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Finite element analysis was done using linear nodal basis functions, with a matrix-free variant of the iterative BiCG-STAB linear solver. Benchmarking (top) and
BiCG-STAB convergence (right) for the "deep water" marine CSEM example described in Weiss (2013). Mesh is composed of 240k nodes on 1.4M tets. Tet
facets on the sea/sed interface couple the sea and sed regions according to the surface integrals described above. Convergence is analyzed in terms of the Ax,
Ay, Az and Phi equations of the global FE system of linear equations.
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true conductivity ÍS/ml
Closer to home, a near-surface example based on the EM-31 ground conductivity meter shows excellent agreement between FE and analytic solutions for both vertical and horizontal modes (above, left). In this
example, a mesh with 113k nodes on 652k elements discretizes is used, where the EM-31 transmitter (TX) and receiver (RX) coils are approximated by mesh-conforming loops 0.1 m in radius. Excitation of a buried 0.1
S/m conductive lens (2 m thick and 20 m radius, located 5 m deep in a 0.001 S/m resistive background) by the EM-31 instrument (above, center and right) reveal the pattern of horizontal and vertical electric fields
within the disk which give rise, in part, to the measured magnetic field in the EM-31 receiver coil.
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