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I\/Iulti-physics investigations of the physiochemical state of Earth’s interior typlcally include eIectromagnetic To determine whether the locality of the Lorenz-gauged coupling terms is preserved in a finite element formulation,
interrogation methods because of their high sensitivity to pore-scale fluids and the strong contrasts in electrical e take the usual step of casting them into weak form, with test functions denoted by a tilde and unit direction / i
Q

o ] ] . _ . _ vectors by n, x, y and z. Focusing on the coupling terms from the vector Helmholtz equation, with the prescription
conduct|V|ty associated with contrasts in Ilthology and the presence of volumetrlcally small, but electrlcally that conductivity o.is piecewise constant over elements {2, with boundaries l',, this term reduces to a sum of surface

conductive mineral phases on grain boundaries. Efficient methods for computing Earth’s three-dimensional  Mtegrals over interior element boundaries plus the boundary condition on L"of the domain £1.
electromagnetic response are cornerstone to such investigations as they inform experiment design, provide a
platform for computational hypothesis testing, and are the primary computational engine (and bottleneck) for
three-dimensional inversion. In this presentation we report recent advances in the Cartesian A-Phi method Q
(Weiss, Computers and Geosciences, 2013) where Lorenz-gauged potentials efficiently sparsified the linear . ~
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system of equations resulting from finite volume discretization of Maxwell’s equations to yield solutions over o(n )®d

frequenaes Spann“j]g . 9—decade§ of magthde' mcludlng d(.)mmantly dlfoSIVE, VYBVG, an.d .mIXEd oropagatlon Expansion of element-wise surface integral terms over a given facet e with nodal basis functions ¢. shows that the

regimes. Here, a similar analyt|c framework has been cast in terms of a generahzed variational pr0b|em, and sum of subsequent integrations over a given facet between adjacent elements of equal conductivity is identically
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more specifically, a finite element solution for unstructured discretizations. Such discretizations allow for spatially ¢ dueto the change in sign of the unit normal vector, n
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For completeness, the coupling terms of the Coulomb gauge are further analyzed to see

variable model resolution that was simply absent in the earlier, Cartesian implementation. @ We demonstrate, A =ux + vy + wz A =ux + vy +wz N ="NzgT+ NyY +N 2 determine whether they, too, can be simplified. As is the case with the Lorenz gauge, a sum of
again, how the Lorenz-gauge leads to matrix sparsification and, ultimately, reduced computational burden when surface integrations over elements (with outward pointing normal) can be partitioned from the
i . . . ) ] R ~ . _ _ _ initial integration. And like before, subsequent integrations over neighboring elements with equal
compared with the Coulomb gauge. These, and other, computational innovations will be exercised through O, (n : A) O dl' = O (nwu + Ny U + nzw) O dI conductivity results in cancellation of these terms. However, the residual from this partitioning is
exemplar problems derived from near-surface studies of wetland environments where the subsurface electrical e e yet another volume integration over the complete computational domain. Since there is no
. ] ] ] ] ] ] ] T requirement that the test functions A adhere to some gauge or that V& = (0 , these volume
contrasts are extreme and the scales in relevant model features are incompatible with Cartesian discretization. NgPe@ integrals persist in the final finite element matrix assembly, resulting in a much greater density of
— (ﬂ,T’ 1~]T7 ’(I)T) (3-6 Ty ¢6¢T (I)e dI’ non-zero coupling matrix elements than one would find in the Lorenz gauged case (except in the

e e e . - ¢ qu pathological case where each element differs in conductivity from its neighbors).
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1. Problem Setup

We are interested in developing and analyzing computationally efficient methods for solving the ultra-broadband, full frequency spectrum, Maxwell’s equations for
applications in subsurface interrogation and characterization. The analysis therefore applies to low-frequency, inductive methods where the effects of dielectric material
properties are dominated by the Ohmic conductivity, to high-frequency radar applications where the converse holds, and to mixed diffusion/propagation problems.

A similar cancellation occurs for the coupling terms in the current-conservation equation, where we find the element-wise coupling matrix (yellow box) to simply be the transpose of the coupling matrix just derived.

Our principal simplifying assumption for this study is that magnetic O =0 —|— 1WE / Oe (n ' A) ¢dl’ = / Oe (nwu + Ty v + nzw) ¢ dl
permeability ptg is assumed constant, whereas the complex electrical 7 —) e e
conductivity o is a function of frequency, w, ohmic (linear) conductivity o, 'lL — /LO — 47T X ].O H/m U,
and electric permittivity, €. R T A T T T
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Because of the divergence-free property of magnetic induction vector, B, it . - L . © We
may by expressed as the curl of a vector potential, A. This results, via v ) B — O B — v X A 6. Numerlcal RESUItS
Faraday’s Law, in the electric field, E, being represented as the sum of the .
frequency-scaled vector potential and the negative gradient of the electric E — —ILUA_ — Vq) _ Deep Water Deep Water BICG—STAB Conve rgence
scalar potential ®. Notice in the static limit (w =0), E reduces to the familiar 10 5005 " ; / | ~ . .
form for DC resistivity analysis. 10-9 : g, = 110wl B )z, for |z| < £/2 m, 10-10 transmitter source R
— 0, otherwise. sea 3.25/m — —o seabed receiver array ot | Ay, u
Substituting these definitions for B = ttgH and E into Ampere’s Law with v Y I_I _ J _ J _I_ &E E 10— 11 ' E 10—12 S ————— a
sourcing term Js yields the starting, “curl-curl” equation for the analysis that — YJtot — Ys > (,h=100m seds 1.0S/m > 1076 | i
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2. Gauging for Uniqueness 3. The Lorenz Gauge - A M,
10-16 | drl i
By introducing the vector and scalar potentials above, the 3 coupled equations (for ~ An alternative choice of gauge is the Lorenz gauge (no ‘t’), V- A = — o6 ®, which 0 . 2 4 0 8 0 . 2 4 0 8 i TEA v ‘J’vg;'.v,’:‘ LY
each vector component of the curl-curl equation) are insufficient to guarantee has (at least) one attractive property, not shared by the Coulomb Gauge. inline offset, x [km] inline offset, x [km] 10-18 _"_E"_fﬁ"'anl ————— J NV S N
: - - : : : : : i arget residua T R
uniqueness of our, now, 4 degrees of freedom. Hence, an auxmaer %@'B'O”r the  Expanding the curl-curl operator in the terminal equation from Section 1, above, Finite element analysis was done using linear nodal basis functions, with a matrix-free variant of the iterative BiCG-STAB linear solver. Benchmarking (top) and | ! R P"l.w L
gauge condition, is introduced. One choice is the Coulomb gauge: - the vc-acto.r Laplacian operator is again mtrf)fiuced .aIc.)ng with the grad-c?llv operator. BiCG-STAB convergence (right) for the “deep water” marine CSEM example described in Weiss (2013). Mesh is composed of 240k nodes on 1.4M tets. Tet i !' 'p'
In the context of nodal finite element analysis, this is perhaps the most popular ~ Substitution of the lorenz gauge condition eliminates the grad(div(A)) term, facets on the sea/sed interface couple the sea and sed regions according to the surface integrals described above. Convergence is analyzed in terms of the Ax, 10-22 | v, il 1)
approach (Biro and Preis, 1989, Everett and Schultz, 1996; Badea et al., 2001, replacing it with a grad(® ), which in turn modifies the coupling term (green box). Ay, Az and Phi equations of the global FE system of linear equations. B L
Puzyrev et al., 2013) and the strategy is to add -grad(div(A)) to the curl-curl Notice that in contrast to the case with Coulomb Gauge (Section 2), the coupling cl) ' 1c|>o ' 2(')0 ' 3(‘)0
equation, which by identity simplifies to a vector Laplacian equation provided the term is now restricted spatially to regions where the conductivity gradient is non- o _ iteration, n
gauge condition is met. zero. In other words, for Earth models consisting of piecewise blocky conductivity Finite Element Code Validation Electric field magnitude (V/m)
\V/ \V/ A v(Vv.A . 5 A NP — J sub-regions, this equation is effectively the (well behaved) vector Helmholtz 1 - [ -
X X o ' T WO A+ [0 — H0Ys  equation, sourced, in part, by internal boundary conditions for each of these sub- 10 4 oo e Vertical electric field Horizontal electric field

regions. LIN approximation
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The gauge condition is met by re-introducing the current-continuity condition I > 10-2 symbols: FE il opveice
along with appropriate boundary conditions for the potentials at the limits of the _§ Y (mej, ﬁ,md)
analysis domain. 9 0.1 m above AEI S
Similarly, re-introduction of the current-continuity condition and substitution of the 2 I
= V- Js Lorenz gauge condition therein, brings forth an elliptic equation for the electric 3
potential, coupled as before to the vector potential through the electrical = 1072 EM31 configuration
Note that in the first equation, the gradient of the scalar potential (red box) conductivity gradient (green box). o ) g f=9.8kHz  AIR
couples all 4 unknowns together, whereas in the latter equation, it’s the divergence V- (ICUO'A + O'VCI)) =V - Js § TX<@> RX @
<

of 9 A (red box). Except in circumstances where the potentials are constant, these — > ey o S —eaumpells
$§=3.66m , = S

coupling terms are non-zero throughout the analysis domain. 10 (5.v . A 4 A - va.) 4 V - (5’V(I)) — V- Js 104 <o E.ABT.I_.I..... o | 4‘—-—;
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Other variants of the Coulomb gauge approach include mixed mimetic edge/nodal

elements where the vector potential is projected onto the space of divergence-free . A ~ 7.2 - N ! s (A _ )
Whitney elements, thereby minimizing the troublesome null space of the curl V-oVe +ok™P + 1w | oV -A—V (O-A) ' V- Jg Closer to home, a near-surface example based on the EM-31 ground conductivity meter shows excellent agreement between FE and analytic solutions for both vertical and horizontal modes (above, left). In this

operator while simultaneously satisfying the Gauge condition by construction - example, a mesh with 113k nodes on 652k elements discretizes is used, where the EM-31 transmitter (TX) and receiver (RX) coils are approximated by mesh-conforming loops 0.1 m in radius. Excitation of a buried 0.1
(Ansari and Farquharson, 2014; Ansari et al., 2017). S/m conductive lens (2 m thick and 20 m radius, located 5 m deep in a 0.001 S/m resistive background) by the EM-31 instrument (above, center and right) reveal the pattern of horizontal and vertical electric fields
within the disk which give rise, in part, to the measured magnetic field in the EM-31 receiver coil.
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