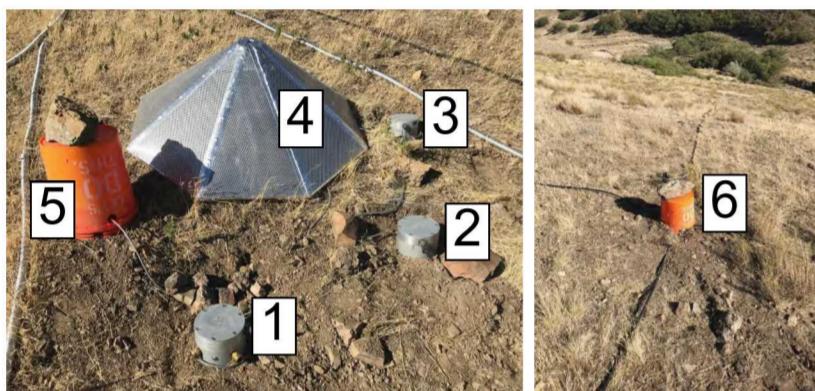


Comparison of Infrasound Wind Noise Reduction Systems for Use in Temporary Deployments

Sarah Albert¹ and Kristine Pankow²

1. Sandia National Laboratories, Albuquerque, NM, USA


2. University of Utah Seismograph Stations, Salt Lake City, UT, USA

Introduction

- Turbulence within the atmosphere (wind) generates noise
- Wind noise can dominate low signal-to-noise ratio waveforms
- Spectral methods cannot be used to reduce noise as it falls within the frequency band of interest for infrasound research (0.01 - 20 Hz)
- Extensive studies have evaluated the performance of robust wind noise reduction systems (rosette pipe filters², wind fences¹, fabric domes⁴)
- Many researchers choose wind noise reduction systems for temporary deployments based on anecdotal evidence
- Motivation:** we are updating the regional infrasound array network in the state of Utah and need to use the best low-cost wind noise reduction system

Experiment Design

1. Reference (open ports)
2. Hyperion High Frequency (HF) shroud
3. HF Shroud
4. HF Shroud + 1.1m Metal Mesh Dome
5. HF Shroud + 5-gallon bucket with hole
6. Hyperion Garden Hose Shroud + 4 porous hoses

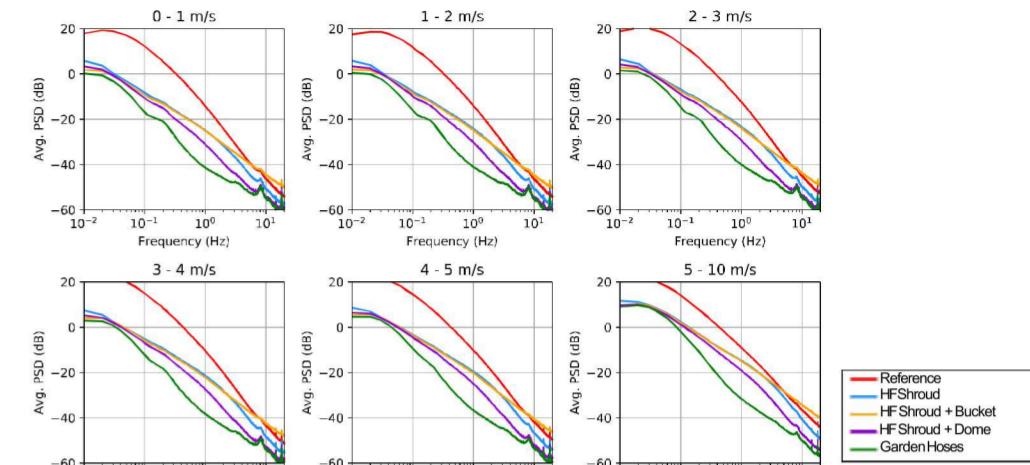
- Weather data collected from a station ~11 km away

Methods

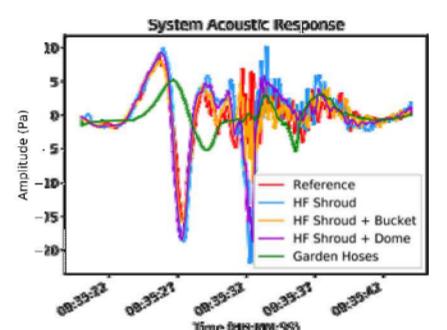
- Data partitioned corresponding to wind speeds (1 m/s intervals up to 5 m/s, then 5-10 m/s)
- Power spectral density (PSD) calculated for 20 s windows with 50 % overlap³
- Average PSD calculated for each wind speed interval
- Noise reduction calculated from reference

Results and Discussion

- Garden Hoses reduce noise the most, but also attenuate the signal.
- HF Shroud + Dome does well at reducing noise and does not affect the signal.
- Placing a bucket over the HF shroud causes an increase in noise over ~8 Hz.
- The HF shroud contains holes around its circumference that work to average the noise.
- Placing a bucket (with a single hole) over the shroud effectively samples the wind at one point rather than averaging around the circumference, causing an increase in noise.


Conclusions

- The HF Shroud + Dome configuration should be used when possible.
- A bucket should never be placed over the HF shroud unless only low frequency signals are of interest.
- While the garden hoses reduce noise the most, they show consider-


Metal mesh domes perform best at reducing wind noise; placing a bucket over the sensor increases wind noise.

PSDs During Night Only

Acoustic Response

HF Shroud vs. Bucket

Wind is averaged over inlets surrounding the circumference of the HF shroud.

Placing a bucket over the top effectively reduces the sampling to one inlet.

References

1. Abbott, J., Raspet, R. and Webster, J., 2015. Wind fence enclosures for infrasonic wind noise reduction. *The Journal of the Acoustical Society of America*, 137(3), pp.1265-1273.
2. Hedlin, M.A., Alcoverro, B. and D'Spain, G., 2003. Evaluation of rosette infrasonic noise-reducing spatial filters. *The Journal of the Acoustical Society of America*, 114(4), pp.1807-1820.
3. Hedlin, M.A. and Raspet, R., 2003. Infrasonic wind-noise reduction by barriers and spatial filters. *The Journal of the Acoustical Society of America*, 114(3), pp.1379-1386.
4. Noble, J.M., Alberts, W.K., Raspet, R., Collier, S.L. and Coleman, M.A., 2014. Infrasound wind noise reduction via porous fabric domes. *J Acoust Soc Am*, 135, p.2409.