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The Direct Simulation Monte Carlo (DSMC) method of molecular gas dynamics (MGD)
has been used for more than 50 years to simulate rarefied gas flows. Modern supercomputers
have brought higher-density near-continuum flows within range. In the present paper, DSMC
is used to study compressible turbulence in the Taylor-Green (TG) vortex flow. The DSMC
results are compared to available numerical results from Direct Numerical Simulation (DNS)
of the (continuum) Navier-Stokes equations.

I. Introduction

The turbulent energy cascade indicates that, in a statistical sense, kinetic energy is generated at large scales,
transferred to progressively smaller scales, and ultimately dissipated by viscosity at the Kolmogorov length scale. This
inter-scale transfer of kinetic energy is even more complicated and less well understood for compressible turbulence
than for incompressible turbulence. In compressible turbulence, nonlinear interactions of vortices, acoustic waves,
shock waves, and expansion waves lead to strong coupling between the velocity field and the thermodynamic fields.

When a compressible fluid is in turbulent motion, its thermodynamic properties (i.e., density, pressure,
temperature, specific entropy) and its thermophysical properties (i.e., viscosity, specific heat, thermal conductivity)
undergo fluctuations. Measures of these fluctuations need to be included in the specification of the turbulent state.
Kovasznay [1] decomposed turbulent fluctuations into three disturbance modes: acoustic, vortical, and entropic.
However, this decomposition is defined only for weak fluctuations and spatially uniform thermodynamic properties.
In this situation, the three modes are dynamically decoupled from each other to first order in the fluctuation amplitude.
However, in compressible flow, mode couplings arise, and any two modes can combine to generate new modes.

The baroclinic interaction between shock waves and vortices creates new vortices, which are amplified by
compressibility when density differences and fluctuations are not negligible, thereby increasing the net vorticity. The
properties of this compressible turbulence may differ from those of incompressible turbulence: physical phenomena
such as thermal fluctuations and translational nonequilibrium may affect baroclinic generation of turbulence. These
physical phenomena involve molecular-level processes at the mean-free-path scale and thus are not typically included
in Direct Numerical Simulation (DNS) of the Navier-Stokes equations. In contradistinction, these phenomena are
inherently captured by molecular-level gas-kinetic methods. Furthermore, all shock-capturing methods degrade to first
order in the vicinity of shocks because of the monotonicity requirements. This is particularly important in the initial
stage of Taylor Green flow, where shocks first interact with vortices and generate smaller scales in the velocity field.

In this paper, Bird's Direct Simulation Monte Carlo (DSMC) method [2] of molecular gas dynamics (MGD) is
used to study compressible turbulence in the Taylor-Green (TG) vortex flow. The remainder of this paper is organized
as follows. First, the incompressible TG vortex flow is briefly discussed. Second, the DSMC and DNS methods are
briefly reviewed. Third, DSMC and corresponding DNS results for the compressible TG vortex flow examined here
are presented, reviewed and compared. Finally, some observations are drawn based on this comparison.
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II. Taylor-Green (TG) Flow

Incompressible Taylor-Green (TG) vortex flow [3,4] is a canonical turbulent flow in which the generation of eddies
and the corresponding cascade of energy from small to large wavenumbers can be observed numerically. TG flow is
initialized in a triply periodic domain —7cL{.x,y,z}rcL using velocity and pressure fields having only a single
length scale L and a single velocity scale Vn :

u = Vo sin(x / L)cos(y / L)cos(z / L)

v=—Vocos(x / L)sin(y / L)cos(z / L)

w= 0

p= po+(pof 7 0 2 /16)(cos(2x / L)+cos(2y / L))(cos(2z / L)+ 2)

(1)

Here, u = (u,v,w) is the velocity and p is the pressure at position x = (x,y,z) and time T = 0 , where T =VotIL.
Thus, all of the kinetic energy is initially resident in a single wavenumber. The initial density is set by assuming a
spatially uniform initial temperature of 273.15 K.

The DSMC code SPARTA [5,6] is used to simulate TG flow. The domain length scale is L= 0.0001 m . The
domain is subdivided into 8 billion cells (2000 with an average of 45 particles per cell for a total of 0.36 trillion
particles. The time step is 3 ps . The gas has molecular mass m= 66.3 x 10-27 kg specific heat ratio y = 5/3 , and
reference-property values at STP (101325 Pa, 273.15 K) for pressure, temperature, and density. The (maximum)
velocity Vo corresponds to a Mach number of 0.3, 0.6, 0.9, and 1.2 and Reynolds number of 500, 1000, 1500, 2000.
For the Mach 0.3 case, the long-time temperature increase is roughly 1%. These conditions marginally satisfy the
incompressibility assumption, while for all the other ones, compressibility effects are increasingly present.

III. DSMC Method

The DSMC method [2] uses computational molecules, or "particles", to represent a gas flow. Each particle
represents a large number of real molecules, and these particles move, reflect from solid boundaries, and collide with
each other so as to reproduce the statistical behavior of real molecules. The computational domain is divided into
rectangular cells for two-dimensional or axisymmetric simulations and into cuboidal cells for three-dimensional
simulations. Objects are represented as triangulated surfaces that intersect these cells. During each time step,
molecules move ballistically at constant velocity over the time step, which may involve reflections from solid surfaces,
and then collide stochastically in a pairwise fashion with other particles in the same cell. Particles reflect from solid
boundaries specularly, diffusely at the boundary temperature, a combination of these processes, or by more complex
processes. Particle-particle collisions are performed using hard-sphere (HS), variable-hard-sphere (VHS), or variable-
soft-sphere (VSS) interactions [2]. Sampling the properties of the particles within each cell yields flow properties for
each cell. Typically, the cell size and the time step are smaller than the mean free path and the mean collision time,
respectively.

Like most molecular methods, DSMC simulations are "noisy": the flow quantities associated with a cell fluctuate
as particles move into and out of the cell. For example, the flow velocity associated with a cell fluctuates about its
mean value with a variation that scales with the gas-molecule thermal speed divided by the square root of the number
of particles in the cell.

Essentially incompressible flows present a challenge for DSMC in that the flow speed is much smaller than the
gas-molecule thermal speed (a "low-speed" flow). Thus, large numbers of particles per cell would seem to be required
to resolve the flow. This difficulty is mitigated by averaging cell-based quantities over multiple time steps and thereby
effectively acquiring many more samples per cell, which reduces noise to an acceptable level. The temporal averaging
duration is chosen to be much smaller than the smallest macroscopic (hydrodynamic) time scale.

Hydrodynamic flows present another challenge for DSMC in that the mean free path is small relative to the domain
(a "high-density" flow). Since the cells are small relative to the mean free path, a large number of cells is required for
such a simulation. This large number of cells necessitates using modest numbers of particles per cell (e.g., 10-100),
which in turn motivates the use of the temporal averaging discussed above.



Thus, a DSMC simulation of an essentially incompressible flow requires an extremely large computational effort
to resolve all length scales from molecular to hydrodynamic while achieving an acceptable signal-to-noise ratio. The
required computational effort has generally prevented DSMC (and other molecular-level methods) from being used
to simulate flows in the hydrodynamic (continuum) regime. Three recent exceptions are simulations of the Richtmyer-
Meshkov and Rayleigh-Taylor instabilities and the incompressible Taylor-Green vortex by Gallis et al. [7,8,9].

All DSMC simulations presented herein are performed with SPARTA, an open-source DSMC code developed and
maintained by Sandia National Laboratories [5,6]. SPARTA is an exascale-class open-source code capable of running
efficiently on massively parallel, heterogeneous-architecture computational platforms.

Molecular collisions are performed using the VSS model [2]. To improve the spatial discretization, collision
partners are selected from within a sphere having a radius that equals the distance traveled by the particle during a
time step [10]. Multiple collisions between the same molecules during the same time step are not allowed, in accord
with molecular chaos for collisions.

IV. DNS Solver

The DSMC results are compared to Direct Numerical Simulations (DNS) executed using the code US3D,
developed at the University of Minnesota [11]. This code is a shock-capturing finite volume code which is capable of
achieving both stability in the presence of strong shock waves and reasonably high accuracy in smooth regions of the
flow. This is accomplished by blending two numerical methods. The first is the modified Steger-Warming method
[12], which offers good numerical stability but generates significant numerical dissipation. The second is the kinetic
energy consistent scheme of Subbareddy and Candler [13], a central-difference scheme which delivers sixth-order
spatial accuracy and lower numerical dissipation at the expense of reduced numerical stability. Using this approach,
the code switches between these two schemes using gradients in the Mach number to detect shocks and apply the
stabilizing modified Steger-Warming fluxes in those regions. The result is an overall scheme with good accuracy in
smooth parts of the flow that is robust to shock waves. For simulations at the highest Mach number (Mach 1.2), this
blended scheme is used. For simulations at lower Mach numbers (Mach 0.3, 0.6, 0.9), only the more accurate kinetic
energy consistent scheme is used since any shocklets produced are not strong enough to destabilize the method. Time
advancement is accomplished using a third-order explicit Runge-Kutta method with a Courant-Friedrichs-Lewy
number of 0.5 to determine the time step.

The fluid is modeled as a monatomic gas (argon) with a power-law viscosity model having an exponent of 0.66
and a Prandtl number of 0.669. For initial conditions, the velocity and pressure fields are set using the classic,
incompressible Taylor Green vortex, given in Equation (1), and the density is set by assuming a constant initial
temperature of To = 273.15K K. The Mach number of the vortex is set by the characteristic velocity, and the Reynolds
number is set by adjusting the viscosity at the reference temperature T.

The simulation domain is a cube having sides of length 2rt-L with periodic boundary conditions. The domain is
discretized using 600 points along each edge. To check for grid convergence, the simulations were also run with 400
points along each edge, and the dissipation versus time was found to be indistinguishable for Mach 0.3-0.9. For Mach
1.2, some differences between the 4003 and 6003 meshes were observed, so additional simulations were run using the
Sandia Parallel Aerodynamics and Reentry Code (SPARC) [14,15], employing the same numerical method described
above. Using SPARC made it possible to perform simulations with grids having as many as 1024 points on each edge
of the domain. The volume-averaged viscous dissipation rate from the SPARC simulations on the 10243 grid was
found to differ by less than 3% from the US3D simulations on a 6003 grid over the time interval 0 T 20 , indicating
that the results are sufficiently grid converged. To further check the adequacy of the numerical scheme that was used,
SPARC was also run using a Weighted Essentially Non-Oscillatory (WENO) finite difference scheme [15] and the
results were found to agree with the blended method described above.



V. Results and Discussion

Figure 1 presents the DSMC and DNS energy dissipation rates as functions of time. The DSMC and DNS results
are in good qualitative agreement for all Mach numbers and over the entire time period during which the energy
dissipation rate is significant, although some differences appear at the time of maximum dissipation. For all Mach
numbers, both methods yield the same rapid increase from T = 2 to T = 6 , the same plateau from T = 6 to T =10 ,
the same maximum between T = 8 and T = 9 , the same rapid decrease from T = 9 to T =15 , and the same slow
decrease from T =15 to T = 20 . DSMC does generally yield a slightly faster energy dissipation rate than DNS
although, in the Ma = 1.2 case, there are instances where the DSMC dissipation rate falls below the DNS dissipation
rate. Differences in the dissipation rate appear for the Ma = 0.3-0.9 cases around the time of maximum dissipation and
for the Ma = 1.2 case from T = 6 onward.
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Fig. 1. Energy dissipation rate as a function of time for several Mach numbers.
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Figures 2-9 present the u velocity component on the bounding planes of the domain from the DSMC simulations
(left) and the DNS simulations (right). There are two sets of figures for each case: one near the maximum dissipation
point and a second one at a point during the decay of turbulence well past the maximum dissipation time. Below each
three-dimensional picture, the top (y-z) plane is plotted separately to allow easier comparison of this plane.



Except for being slightly noisy, the DSMC molecular results are virtually identical to the DNS Navier-Stokes
results for the point of maximum dissipation at all Mach numbers. At that time, the large-scale structures that are the
remnants of the initial conditions are clearly discernible, but smaller-scale structures are also present.

The DSMC and DNS flow fields for Mach numbers greater than 0.6 and at times past the maximum dissipation
time, however, exhibit visible differences, especially on the y-z plane. The DSMC simulations have richer structures
with finer features than the DNS simulations have. In the y-z plane, in particular, the late-time DSMC fields exhibit
significant velocity fluctuations that are 10 times larger than fluctuations observed in the DNS simulations.

It is well established that shock waves can generate new turbulence [16]. When the turbulent Mach number is of
order unity, the turbulence properties differ substantially from the incompressible situation because physical
phenomena at the mean-free-path level, such as thermal fluctuations and translational non-equilibrium, may play a
role in the baroclinic creation of turbulence. These phenomena are typically not included in the Navier-Stokes equation
but, in contradistinction, are inherently captured by molecular-level kinetic simulations. The appearance of these
fluctuations at later times for Mach numbers above 0.3, along with the simultaneous appearance of finer structures on
the other planes, could be attributed to baroclinic creation of vorticity between shocklets, which appear in the high-
Mach-number cases, and thermal fluctuations. In this case, a new mode of turbulent fluctuations needs to be added to
the Kovasznay analysis, namely turbulent fluctuations caused by the interaction of thermal fluctuations and shocks or
shocklets in the flow field.

Since DSMC assumes a statistical description of the gas, each particle in the DSMC simulation represents
approximately 10,000 real molecules (the "simulation ratio"), so it is reasonable to question whether these fluctuations
are a numerical artifact of the DSMC simulations. To investigate this assertion, simulations with half and double
simulation ratios were performed. It is reassuring to observe that changes to the simulation ratio did not affect the
amplitude of these fluctuations. This suggests that these fluctuations are not numerical artifacts but are hydrodynamic
features of the DSMC simulations.

Fig. 2. DSMC (left) and DNS (right) u velocity fields for Ma = 0.3 at T= 8.7.
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Fig. 3. DSMC (left) and DNS (right) u velocity fields for Ma = 0.3 at T = 12.1.

Fig. 4. DSMC (left) and DNS (right) u velocity fields for Ma = 0.6 at T = 8.45.
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Fig. 5. DSMC (left) and DNS (right) u velocity fields for Ma = 0.6 at T = 18.47.

Fig. 6. DSMC (left) and DNS (right) u velocity fields for Ma = 0.9 at T = 7.63.
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Fig. 7. DSMC (left) and DNS (right) u velocity fields for Ma = 0.9 at T = 14.77.

Fig. 8. DSMC (left) and DNS (right) u velocity fields for Ma = 1.2 at T = 6.87.

8



Fig. 9. DSMC (left) and DNS (right) u velocity fields for Ma = 1.2 at T = 18.56.

VI. Conclusions

Several compressible Taylor-Green (TG) vortex-flow simulations were performed using the DSMC method.
Results for the energy dissipation and u-velocity fields were compared to Direct Numerical Simulation (DNS) results
for the (continuum) Navier-Stokes equations. It is observed that the two techniques are in good agreement for low
Mach numbers (0.3 and 0.6). As the Mach number increases, differences appear in both dissipation rates and velocity
profiles, especially beyond the point in time at which the maximum dissipation occurs. In all cases at late times, the
DSMC simulations exhibit flow structures that are not seen in the DNS simulations, especially on the y-z plane. These
differences could be attributed to baroclinic creation of vorticity due to the interaction of shocklets and thermal
fluctuations, the latter of which are present only in the DSMC simulations.
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