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SunShot 2030 LCOE Targets for the US @)
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At 3¢/kWh solar would be
among the lowest cost
options for new generation—
and below the variable costs
of existing fuel plants.
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2010, LCOE progress and targets for utility-scale PV are for average U.S. climate and

without the ITC or state/local incentives. The 2016 number is for a system with
one-axis tracking.
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Module Price: and Soft Costs and Lower Degradation $4/KW-yr
$0.65 to $0.30/W $0.85 to $0.55/W Rate:

0.75% to 0.2% lyear

100 MW/ ;) One-Axis Tracking Systems With 1,860 kWh,c)/kW p(, First-Year Performance.
Includes 5 Year MACRS. Cost of capital is 7% and inflation is 2.5%. 3




Why are 50-yr Modules so Appealing?

50 yr module provides multiple
opportunities to reach SunShot 2030
goals.

« Ultra low cost modules
(~$0.12/Wdc), lower efficiency
(17%).

« Low cost ($0.30/Wdc), high
efficiency (25%)

« Higher cost ($0.40/Wdc), very high
efficiency (35%)

$0.60

Module Price ($/Wdc)

Alternatives for 30 and 20 yr lifetimes
require such low module prices that it
is hard to believe they would ever

achieve LCOE goals. $0.00

$0.10

50 yr module reduces future waste streams
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All curves represent
3¢/kWh LCOE in
average U.S.

climate
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0.2%/yr deg
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All scenarios assume: 7% cost of capital, 2.5% inflation, $0.85/W system cost,
$4/kW-yr O&M, 21% capacity factor




How to Increase Lifetimes and Decrease Degradation Rates? [ &=

= Understand why modules degrade and fail.
= Choose designs and materials that minimize degradation and failures.
Choices can be climate specific!

Module fielded for 8
years in a tropical
climate. Fewer cell
cracks. No signs of

corrosion.
R s Module fielded for 8 ,
e D VR . o
years in a hot dry i
climate. Cell e T
cracks are severe. e —%
No signs of Bl 2
[l "1“ —
corrosion. b 4
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Causes of Failure and Degradation @)

= Damage during shipping or installation
= E.g., Cracked cells

= Optical degradation of materials
= UV degradation of encapsulants (“yellowing”, “browning”)
= Coatings wearout, scratches in topsheet

= Mechanical stress

= Wind & snow loading = cracked cells, broken glass, bent frame
= Thermal cycling, Freeze-Thaw of water

= Chemical transport
= Water ingress, Acetic acid formation
= Corrosion

= Failure of accessories

= J-box, cables, connectors




Prevent damage due to shipping and installation@ &=

= Mechanical analysis of stresses from vibration, shock, drop, etc.
should be made for various packing solutions.
= Accelerometers installed on pallets — Data used to design package
= Vertical vs. horizontal stacking

= Frame vs. frameless
= Effect of glass thickness

= Proper training and equipment needed for installers

= Field methods for checking that installation is damage free.
= Field imaging of modules (EL, PL, IR, IV, UVF)




Preventing Optical Degradation @

» Polymers degrade when exposed to UV radiation
Additives are used to absorb UV and thus protect
polymer from degradation.
* Very hard to measure additive concentration.
« Current method relies on qualification testing
(time consuming and does not have full
coverage)
We need better controls and assurances on UV
durability of polymers.
We need to know if/how various formulations
affect durability and physical properties.
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« UV-stabilizers & absorbers — absorb UV and dissipate as heat

« Radical scavengers — antioxidants that remove peroxy, alkoxy, hydroxyl, and alkyl radicals

« Crosslinking agents — curing agents that help to form covalent bonds between polymer molecules

« Adhesion promoters — coupling agents (typically organosilanes) that help dissimilar materials to bond (e.g.

glass, PV cells, encapsulants, backsheets). 8



Preventing degradation of Glass coatings @) =

. We need tO better UnderStand hOW Single Layer Antireflective Coatings:
different Coatings degrade Traditional vs.Core-shell AR Coatings

Traditional AR Coating /

. Binder

= Accelerating ageing studies combined
with detailed laboratory
characterization is a good first step.

SEM cross-section

= Uncertain whether common coatings of KhepriCoat

can last for more than a few years in
the field.

.
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DSM Study in Gobi Desert 9




Designing for Mechanical Stresses

= Multiple cell interconnect methods available

= Role of encapsulant physical properties Strain gauges
" attached to PV cells
= Modulus vs. temperature (glass transition temp) within laminate
= Thickness
= Glass-backsheet vs. glass-glass designs i
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FEA predicted cell aemien—using LoadSpot
strains @ 2400 Pa 10




Wide Variety of PV Cell Interconnection Approaches @&z,

: : Soldered busbars Multiwire
Each method differs in many ways . .

that may affect durability and
lifetime
» Soldered Busbars have a long
history.
- Stress focused at cell edge .~ Tabbing ribbon |
» Different thermal expansion . sy NG NE—— |
coefficients = solder bond
fatigue. o _ _ Metal Wrap Through,
« Shingling and MWT use ECAs Shingling, Conductive Adhesive (ECA)  -~onductive backsheet

which are relatively new in PV. %

« ECAs can distribute stress
but will they last for 50
years?
« MWT is a flat design which
minimizes local stress.
* Not widely adopted

We need more independent studies on how different cell interconnect methods respond to mechanical loading. 11




Managing Chemical Transport within a PV Module s
uv
SR glass
. A '\\‘\‘ J VA
= Two general approaches: e (e
= 1. Allow some transport in and out of the module. I | W (e
\ & inch cell
= EVA + UV --> Acetic acid Ty ~
= Permeable backsheet allows acetic acid to diffuse out * p— g|a§m
= Water can diffuse in at night and out during the day when module saion N kit
is hot
= 2. Severely limit transport of water into module. B Glass <
= Glass-glass modules with edge seals (e.g., desiccant filled H,0 — [ Seal Encapsulant 3

Glass

polyisobutylene)

—

= Use encapsulant that does not produce acetic acid (e.g., polyolefin)

= More studies of these two approaches are needed.




Failure of accessories —J-Box, Connectors, Cable§t &

* Connectors are a common source
of failure, but are also field
replaceable.

* Compatible # Compatible

* Junction boxes provide housing for

bypass diodes or power electronics

* Pathway for moisture to enter
module.

 Adhesives must be reliable and
durable.

e Durability and abrasion resistance of
cables (wind)

Innovation: Investigations into alternative
ways of interconnecting connecting modules,
(e.g., wireless power transfer).
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Hot Connector Really Hot Connector ~ Cold Connector
(common) (not common) (common)

Edge-mounted J-Box for glass-glass modules
13




Summary and Conclusions ()

= There are significant economic and environmental benefits to extending the lifetime
of PV systems.

= There is a wide variety of module designs and materials used in PV modules.
= Each design choice impacts lifetime differently in different climates.

= More laboratory and field studies are needed to optimize module and system
designs.
= Ensure no damage during shipping and installation
= Choose encapsulants and coatings that will withstand UV exposure, wind, dust, snow, etc.
= Design to minimize mechanical and thermomechanical strains
= More investigations comparing cell interconnection strategies are needed.
= Glass-backsheet or glass-glass?) — Can water transport be tolerated in a 50 yr module?
= Connectors, cables, and J-box are weak parts of the module. Alternatives?

= How to maintain or reduce costs while designing for longer lifetimes?
14




Thank you! @)

Upcoming Events
= 2020 PV Reliability Workshop, Lakewood, CO USA (February 25-27, 2020)
= PV Materials, Modules, and Systems Reliability
= SiliconPV2020 & BifiPV 2020 Workshop, Hangzhou, China (March 30-April 3, 2020)
= 14% pV Performance Modeling Workshop in Salt Lake City, UT USA (May 19-20, 2020)
= PV Measurement, Modeling, Monitoring and Integration
|IEEE PVSC, Calgary, Canada (June 14-19, 2020)
= bifiPV Workshop 2020 in Walnut Creek, California, USA (July 2020)
= Bifacial cells, modules, systems, modeling, and characterization

15




