The Stabilizer Rank of the T-Gate Magic State i g n x

Stabilizer states:
- given a state |W>, the stabilizer group is the set of tensor

products of Pauli operators that stabilizes |\W>
e.g. I[|0> = [|0> and Z|0> = |0>.

- stabilizer states {|\W;>} on n d-dimensional qudits are the set of
states stabilized by d n commuting stabilizer group elements
Clifford gateset can be fully generated by the CNOT gate,
Hadamard and the phase gate

- gateset is not universal — it takes stabilizer states to
themselves

- projection onto Paulis also takes stabilizer states to themselves
Pauli measurement + Clifford gateset + (convex combos of)
stabilizer states = Clifford subtheory

Gottesman-Knill theorem: there is a polynomial-time classical
algorithm to simulate the Clifford subtheory.

- in fact, the optimal qubit (strong simulation) algorithm scales as
O(n®) for n qubits and scales as O(n) for n odd-dimensional qudits.

- stabilizer states {|d;>}; form an overcomplete basis.

- therefore, any state |\W> can be expressed as |[\W> = XX, ¢; |b;> .

- the stabilizer rank x (W) of a pure state |V> is the minimal

number x of states required in a stabilizer state decomposition
of |[\W>.

Trivial tensor bound property: Let x,(\V) be the stabilizer rank
of |[W>" . Since the tensor product of two stabilizer states is a
stabilizer state, it follows that X,..('WV) < Xo(W) X, (\W).

T-Gate Magic State:
IT> = 272(|0> 4+ e™* [1>).

The T-gate magic state extends the Clifford subtheory to
universality.

It has been postulated that x(T) grows slowest with increasing
number of qubits.

- for t =1 qubit T gate magic state, x1 = 2.

- for t = 2 qubit T gate magic states, x2 = 2.

- for t = 3 qubit T gate magic states, x3 = 3.

- for t = 6 qubit T gate magic states, xg < 7.

It is has been conjectured that this bound is tight.

-x1t=2"

- th/ 2 — 205t where t is even.

- X3t/ 3 3t/ 3 ~ 9053t where t is a multiple of 3.
- X6t/ 6 _ 7t/ 3~ 2047t here tis a multiple of 6.

The last bound provides the most favorable asymptotic scaling, and
so the outcome of this procedure is often reported as a scaling of
0(20'468t)for the qubit T gate magic state.

stabilizer rank

- stabilizer state decompositions are a pretty good way to
measure the cost of strong simulation (i.e. classical
computation of the probability outcome of a measurement)

- the inner product of two stabilizer states <¢j|¢j> is governed by
Gaussian elimination and therefore scales as O(n3).

-in a Pauli-based computation, given a projector
II= Hti:1(1+01 P5)/2 where Pj is a Pauli operator, it follows
that LM '=cj"¢j <l TIcp>

- since the number of terms is xnz, we want to use the lowest xn
that we can to simulate this classically

Wigner Function:
In odd d arithmetic, —1/2=(d+1)/2.

Therefore,
T((Eplg)q) — o dtD27epyeq
and

T(E, Eq) =T(=E,~Eq) =T'(E, E).

T are Hilbert-Schmidt orthogonal
and so can be used as a complete operator basis for any operator A:
A=d"" N eqeziaz TH(T(=E,~EQA)T(E L E )

= d_lZEp,EqEZ/dZAﬁ(gplgq)T(gp/gq)’

We also note that the T satisty the translation group structure with an
additional phase:

T(E)T(E) :T(fir"52)(U(_ElpEZquélq&p)(dJrl)/z-

We denote the symplectic Fourier transform of T:
R(szxq) :d_lZép,cﬁqEZ/dZwgpaq_gquT(gp/&q)‘

It is easy to show that R satisfies the following properties of a
reflection operator, with added phase:

RH)T(E) = R(x—&/2)a PP,

T(OR(X) = R(x+&/2)w P4,

R(x)R(xp) = T(2(xg=x7)) ™ PSP,

This implies that R*=I.
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Therefore, R are Hilbert-Schmidt orthogonal, Hermitian, self-inverse and unitary

operators.

This means that they can serve as an operator basis for any operator A with cofficients

(denoted A,(x,,X4) below) which will be real-valued:
A=d'y wpxq LTRXpXg) A)R(X 5, X ) = A (X, X )R (X, Xg)-

As a result, it can then be shown that A,(x,,x,) satisfies the following properties:

pr,quZ/dZAx(Xp/Xq) — 1/
ZXpEZ/dZAX(XpIXq) :<Xq | A | Xq>/
quEZ/dZAx(Xp/Xq) :<Xp | A | Xp> y

This representation of finite odd-dimensional quantum states is especially simple for the

Clifford subtheory. For stabilizer states p, Gross proved p,(x,,X4)€R,U{0}.

For Clifford gates O, Almeida proved O,(x,,X,) = exp(2miS(x,,X,)/d),
where 5(x,,X) is a quadratic function with integer coefficients.

Furthermore, stabilizer states can be expressed in terms of quadratic Gauss sums.
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It also seems that for the T-gate magic state Wigner function, the number of
quadratic Gauss sums necessary to express the function seems to follow the

T-gate magic state's stabilizer rank:

pr(x) = 92D 0ez/32€XP2TI/I(—Xpq + 2Xg ) —Xpq+2 X 3(Xpq—Xg)X,

p*r(x) = exp( 2mi/9 (7X°%, + 6X%yq (Xgo + 02 ) +
3X2q (2Xp2 ~+ 2X2q —+ 2Xq2 O_Zq + O_zzq) -

6(Xq1 + Xqz )0%q + 3(2X,; + Xy + 2X% + X%)0y +

3Xp1 Xq1 + 8% + 3%y Xqz + 8%°,))
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Can this correspondence be used to push the search for the T-gate magic

state stabilizer rank beyond six qudits?
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