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SUMMARY

Hankel transforms are prevalent in a vast number of geophysical problems. They arise in analytic
solutions which reduce to radial symmetry (e.g. dipole antenna problems, loop antennas, etc.). In

electromagnetic geophysical applications, particular interest lies in the computational cost and need to explicitly state If we know the range which we are solving for (i.e. 7,4, and 1), We can start  tolerances in two different sections. There are two potential l 6 ~ 13.16
accuracy of evaluating them and improving current methods of evaluating Hankel transforms to result log(imc_‘x) _ areas in the QWE code where tolerance might affect the » { 1 —
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the digital filter. However, this approach suffers from various drawbacks, not the least of which is the until we reach criteria: A,,,4x "inax® < 7. This now leaves us with determining the ideal choice for two quadrature result before it is passed to the epsilon algorithm 10 E\J c
complete absence of an error estimate. However, as the digital filter method is comprised of only parameters: 1,,,,, and N. The optimal choice for 1,4, was generally found to be fairly stable, and can (termed quadrature tolerance), and the final tolerance that 15 = 0.1 =
weights and abscissae used to calculate various Hankel transforms, it is incredibly fast. In contrast, be any value in a range of 103 to 10°, with A,,,,,, = 10° optimal for solutions with zeroth-order Bessel determines the termination criteria for the QWE iterative i %D 0.03
adaptive quadrature methods remain the ‘gold standard’ for accuracy as they can be evaluated withina solutions and A,,,,,, = 10° ideal for solutions containing first order Bessel functions. sequence. In Key (2012) this is formulated using the 147
given error tolerance. This accuracy often results in more computationally expensive solutions which | s ) difference (48S;) in the current (S;) and previous (S;_;) -20 -15 -10 -15
b - ey (Ar)dA e~ (Ar)dA | 5e P .
make repeated Hankel transforms cumbersome to efficiently compute. Recent analysis by Key (2012) . A . extrapolated sum, which needs to be smaller than an Iogm(e tol,) Iog_lo(e tol_)
found that in some circumstances a well-designed quadrature-with-extrapolation (QWE) algorithm can T 102 e e expression containing an absolute () and relative tolerance
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Hankel transforms appear in the analytic solutions of many electromagnetic problems. When G QWE quad) for a range of quadrature tolerances (107! to log, (e tol.) Iogm(e tol.)
confronted with a PDE where we can assume radial symmetry, our typical analytic strategy is to Fourier g 1072%) and € tolerances (107'° to 107%°) to identify which 10
transform away two of the invariant directions. This double Fourier transform, while successful in h 0 part of the QWE code has the most impact on the overall
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reducing the problem to a much simpler ODE F(u,v), still requires a double Fourier transform to return Ao A 10M accuracy of each QWE code. For each quadrature and € <10 . 10 316
to the original solution f(x,y), which is quite computationally expensive, even with a Fast Fourier tolerance combination we evaluated the percent error |6 N .
Transform (FFT) algorithm. = A2 — 2mpy(3.2) ~ A (bottom figures) as well as the overall average percent error B e | 1 v
1 ® ® . The above figures show the results for several Hankel transforms at c=10 and N=2'°. The darker grey a.nd the time it took to eva.luate each combination (flgu_rfg fo -10§ g A 1 0.32 GE)
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270 J_ 0 J_co for large sample lengths (N=21° or greater), and not as accurate as initially hoped. 107%) had the largest influence on the total accuracy of the -12 g 8’
Instead of applying a double Fourier Transform, we can instead apply a 1D Hankel Transform, resulting . solution while the quadrature tolerance generally only 14'9* o 20 U.ls
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A =u? + v? We compare three different versions of our homegrown QWE solution, developed following Key “ccurate solution |Og10(6 tol.) log, (e tol.)
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(1983) evaluate the Hankel transform by breaking up domain into a series of subdomains from 0 to 0 \/(Cz + 7"2) 1-6
infinity, performing adap,tlve .quadrature_ L egch of the subdomalps, and usm.g an extrapolation We first evaluate overall relative error for the above methods as a function of r (figures below). To 15000 - 15000 - 15000 -
method, such as the Padé series, to predict series sum. An extrapolation method is generally used as : . : . N
the oscillatory kernel (a Bessel function, .. (A7), in this case) decays slowly, which would require a large obtain an estimate of where error propagates the most in the QWE formulation, we evaluated the »
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of error. The adaptive quadrature methods can be potentially slow but has the advantage of having O _ . _ 5000 - 5000 - 5000 =
error estimates available. quadruple precision Bessel functions (via the ARB C library), henceforth referred to as QWE BQ, o
1 and evaluating the entire QWE algorithm in quadruple precision, referred to as QWE quad. 0 0 0 O
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Digital filters, on the other hand, are often commonly used in geophysical forward codes because of th "é‘ 5
their fast computational speed. Digital filters are designed and implemented by converting the Hankel - o 10 — QWE BQ LT method
transform into a convolution through a change of variables, solving the convolution integrals through ) 10_10 : g = =QWE quad  The Logarithmic transform method, while potentially promising, had a large number of drawbacks that resulted in the method being relatively unusable
either performing deconvolution in the spectral domain (most common) or through the Wiener-Hopf - b i for evaluating Hankel transforms.
method. The resultant weights and abscissae are then used to calculate other Hankel transforms. While -  The LT method requires three poorly defined constants to return a viable solution, resulting in a degree of ambiguity for other potential results that were
fast, the digital filter method is problem specific and may not apply to every application. Additionally not tested in this evaluation (it is difficult to predict if the prescribed A,,,, for zeroth and first order Bessel functions would result in similar accuracies
there are no error estimations available for the digital filter method, making it difficult to estimate 10710 for different functions than those tested).

accuracy.

2. Hankel transform methods

Within this study, we restrict our evaluations to two commonly used digital filters (Guptasarma &
Singh, 1997; Kong 2007), two adaptive quadrature methods (Chave, 1983; Key, 2012), and examine
another method which uses a log-transform to coach the problem into a convolution which can exploit
the FFT algorithm (Bisseling & Kosloff, 1985): _

Fr) = j AF(D) J,(Ar) dA
0

3. Log - transform method

The LT method depends on three unknown constants to result in a viable solution: 6 (step size), 4,4«
(maximum value in the Hankel domain), and N (sample length). We can reduce the parameters we
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We then compare the average percent error as a function of time for increasing N value for the LT
method, increasing quadrature tolerance for the QWE solutions, and increasing absolute tolerance for
the AQ solution (figure below).
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5. QWE tolerances

In addition to comparing the overall precision between the
QWE codes, we also compared the overall effect of given

* Additionally, the LT method requires a range of values with the 7,,,;,, value required to be near zero, further reducing its usefulness for generic solutions.

 Lastly, the LT method requires extremely large sample sizes (N=2'° or greater) to result in a still rather low accuracy which is overall not as
computationally efficient as the much more accurate double precision QWE results.

QWE error analysis

e We examined the overall precision of the QWE code by evaluating the QWE code with different precisions and examining how the quadrature and
epsilon algorithm tolerance affected the resulting solution accuracy.

 Examining the relative error, the QWE BD solution is relatively close in error to the AQ, QWE BQ , and QWE quad solutions, however it is still not as

accurate as the rest of the adaptive quadrature solutions (with all QWE solutions at quadrature tol. = 10714, € tol. = 10~ and the AQ solution at abs.

 Additionally, the quadrature tolerance had minimal effect on the overall accuracy of the final QWE solutions, but a large impact on the time each

L tol.=10"17 rel. tol.=10717) .
‘ Ct)  With only the addition of quadruple precision Bessel functions to the double precision QWE, we immediately see an improvement in accuracy, resulting
, NS ) in a (less stable at lower € tolerances) QWE BQ solution that is around as accurate as both the AQ and QWE quad solution.
f(rmme ) Amax O Z _zmSF(’lmaxe_ma)]n(ﬂmaxrmme m)6) % | m QWE quad « As the QWE BQ solution has a much lower relative error at the same tolerance than the QWE BD solution, we can interpret that to mean that the
Jj=0 o majority of the precision is tied up in the accuracy of the Bessel function zeros and overall precision, especially as the QWE quad solution remains at the
r=r e 1=21_.e ™ wherem=j=0,.N—1 E) same relative accuracy with only the benefit of an increase in stability for lower € tolerances.
<

We examine the ability of the log-transform (LT) method to compete with the above listed methods in
both computationally efficiency and accuracy. We additionally develop a homegrown version of the Key
(2012) QWE method in FORTRAN and evaluate the error propagation associated with various parts of
the QWE algorithm which is divided into three separate sections for our analysis: generation of the
zeros and Bessel weight vector, adaptive quadrature evaluation, and epsilon algorithm extrapolation.

Affiliations:

Sandia National Laboratories is a multimission laboratory managed and operated by National

1. Sandia National Laboratories, Geophysics department, adarrh@sandia.gov

time (s)

References:

Bisseling, R., and R. Kosloff (1984), The Fast Hankel Transform as a Tool in the Solution of the Time Dependent

solution required, indicating that it is preferable to run the QWE code with a relatively small € tolerance and a large quadrature tolerance.

* Finally, the overall time and average accuracy for each method indicates that the two double precision QWE solutions are as fast or faster than a digital
filter with much higher accuracy. As the QWE BQ solution is nearly as fast as the QWE BD solution and as accurate as the AQ and QWE quad solution, the
ideal choice would be to use the QWE BQ solution with a relatively small € tolerance and a large quadrature tolerance for the optimal solution for both
accuracy and computational efficiency.

Johansson, F. (2017), Arb: efficient arbitrary-precision midpoint-radius interval arithmetic: IEEE Transactions on

Sandia
National
Laboratories

Computers, 66(8),1281-1292.

Key, K. (2012), Is the fast Hankel transform faster than quadrature?: Geophysics, 77, F21-F30.

Kong, F. N. (2007), Hankel transform filters for dipole antenna radiation in a conductive medium: Geophysical
Prospecting, 55, 83—89.

Zhang, S. and J. Jin, (1996) Computation of Special Functions, Wiley.

EERD, U.S. DEPARTMENT OF
©ENERGY

| WA K =g%)]
IVA'Q-

2. Colorado School of Mines, Geophysics department Schrédinger Equation: J. of Comp. Physics, 59, 136-151.

3. Sandia National Laboratories, Geophysics department, cjweiss@sandia.gov

Technology &Engineering Solutions of Sandia, LLC, a wholly owned subsidiary of Honeywell

International Inc., for the U.S. Department of Energy’s National Nuclear Security Administration Chave, A. D. (1983), Numerical integration of related Hankel transforms by quadrature and continued fraction
g/’:ﬁgﬁontrad DE-NAODD3525. expansion: Geophysics, 48, 1671— 1686.
**** . Guptasarma, D., and B. Singh (1997), New digital linear filters for Hankel J (0) and J(1) transforms: Geophysical

Prospecting, 45, 745-762.

h)




