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2 I What does radiation damage mean in semiconductors!?

Cumulative Effects

° Total ionizing dose
° Displacement damage

»'Trap creation (carrier
recombination)

»Degraded performance

King, Armstrong, et al., IEEE Transactions on Nuclear Science, 62, 2015
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I-V curve for GaN vertical diodes exposed to proton fluences !



3 I What does radiation damage mean in semiconductors/?
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Lee, King et al., IEEE Radiation Effects Data Workshaop, 2018
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, | Gallium Nitride (GaN) devices have demonstrated success as
radiation-hardened power diodes

I N B

Band gap at 300 K (eV) 1.1 3.4
Charge carrier generation (eV) 3.6 10.0
Direct/indirect? Indirect Direct
E, (eV) 12.5 20.5 (Ga)
10.8(N)
GaN HV power diodes:

* Higher theoretical performance (Figure of Merit) than S1, GaAs, or SiC
* 4 kV breakdown voltage

e 3-5 MV-cm™! Critical electric field

¢ 1-2 mQ-cm? On resistance

* < 10% change in breakdown voltage from proton fluences < 10!3 cm

RADIATION EFFECTS
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s I Our objective: Apply exploratory physics modeling approaches
exploring defect evolution in gallium nitride

E'ﬂ A I L T I n Ll L L]

Electron irradiation
" ' ] * (GaN defects not well-understood
16 F :
~ F * Defect evolution not incorporated in
E 12} commercial modeling software
FE B
= s * What defect physics and mechanisms are
=] ) . . . .
e most significant for higher-order device
g 04 or circuit models?
8
0o * Initial goals:
i I i 1 i i I i L . Compare baseline response With
0% 100 0* 10?10 unexposed power diodes
Time (s)

* Validate device response to ionizing

Previous efforts have been successfully dose (no displ 1 \
ose (no displacement damage

applied to exploring time-dependent defect
concentrations for electron-irradiated Si.

Myers, Cooper, and Wampler, Journal of Applied Physics, 104, 2008
MODELING APPROACH



6 | Model physics—Device geometry is a simple p-n junction

lonizing
radiation
Depletion reg];on | . Metallized “Iconta’_ct
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7 | Model physics—carrier transport

*Numerically solves coupled 1D ODE’s for charge carrier transport:

% =7 (—.UiniF — %T,uiVni) + generation — recombination (Drift-Diffusion)

(n—p+Np—Nj,)
€s

Vip = —

(Potsson’s Equation)

» Solved carrier transport — device field structure

* User-defined material parameters tailored to device design p-type layer S| omm

e User-defined radiation fields and defect concentrations |
n-type layer 1um

Thinned GaN Substrate

TifAlTi/MifAu

Device area >> depth

Sandia vertical power p-n diode
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s | Model physics—how do we deal with defects!?

* Assumes single generic defect at single energy (adjustable, assumed mid-band)

* 3 generic charge states: D7, DY, D*

O

* Track concentrations of e, h, D", D, D* vs depth and time:

h+
L O—
________ DO s
e-
L O

D+

* Carrier-Defect reaction rates calculated alongside coupled Drift-Diffusion and Poisson’s

equations

MODELING APPROACH



9 I Treatment of defects was significant in establishing a matching
baseline comparison to forward-biased experiment in ideal
diode regime
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0 | Benchmarking experiment measures photocurrent response to
electron beam, simulating Compton electron generation from
gamma irradiation
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Real devices demonstrate two photocurrent response regimes
when exposed to ionizing radiation. This phenomenon is not
properly modeled by impact ionization alone.
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12 | Increased dose rate results in the onset of multiplication at lower
biases.
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13 I What could we be missing!?

* Space-charge limited conduction breakdown mechanisms

* Multiple defects/ GaN-specific defects

* Higher-dimension geometries/ field structures

Where are we going next!

* Exploration of breakdown mechanisms

* Role of defects from heavy ion radiation or neutrons and photocurrent to be explored

* Mixed field models and experiments

COMPARISON WITH EXPERIMENT
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14 | Conclusions

* An exploratory physics code examining defect evolution in GGaN 1s being developed

* Near-term objectives:

* Compare baseline electrical response of real GaN power diodes

* Validate radiation response under pure-ionizing dose (no displacement damage)

* Successes:

* Baseline agreement for forward-biased devices

* Near-agreement in breakdown voltage for baseline reverse-biased devices, but no

leakage current

* Strong agreement with experiment for photocurrent response in low-biased regimes

ON BEAM CHARACTERIZATION ID CARRIER TRANSPORT MODELING 4 MEV RECOIL SPECTRUM



15 | Further understanding of device physics enabled by examining

depth profiles
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