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2 I What does radiation damage mean in semiconductors?

Cumulative Effects 

o Total ionizing dose

o Displacement damage

>Trap creation (carrier

recombination)

>Degraded performance
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3 I What does radiation damage mean in semiconductors?

Transient Effects 

° Dose rate effects

° Single event effects

> Charge carrier generation

>Bit flips, single event latch-up or burnout Cr
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4 
1 Gallium Nitride (GaN) devices have demonstrated success as
radiation-hardened power diodes

Si

Band gap at 300 K (eV)

Charge carrier generation (eV)
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GaN HV power diodes:

• Higher theoretical performance (Figure of Merit) than Si, GaAs, or SiC

• 4 kV breakdown voltage

• 3-5 MY-cm-1 Critical electric field
• 1-2 mQ-cm2 On resistance
• < 10% change in breakdown voltage from proton fluences < 1013 cm-2
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5 Our objective:Apply exploratory physics modeling approaches
exploring defect evolution in gallium nitride
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Previous efforts have been successfully

applied to exploring time-dependent defect

concentrations for electron-irradiated Si.

GaN defects not well-understood

Defect evolution not incorporated in
commercial modeling software

What defect physics and mechanisms are
most significant for higher-order device
or circuit models?

Initial goals:

Compare baseline response with
unexposed power diodes

Validate device response to ionizing
dose (no displacement damage)

1

Myers, Cooper, and Wanapler, Journal qf Applied Physics, 104, 2008
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6 Model physics Device geometry is a simple p-n junction
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7 I Model physics carrier transport

*Numerically solves coupled 1D ODE's for charge carrier transport:

n —L = 1-7
V (— PiniF 

kT 
+ generation — recombination

at

(n—p+ ND—NA)v2 cp =  

Es

• Solved carrier transport —> device field structure

• User-defined material parameters tailored to device design

• User-defined radiation fields and defect concentrations

(Drift-Diffusion)

(Poisson's Equation)

p-type layer

n-type layer

rifAlfTipli/Au
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15 urn

Device area >> depth

Sandia vertical power p-n diode
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8 I Model physics how do we deal with defects?

• Assumes single generic defect at single energy (adjustable, assumed mid-band)

• 3 generic charge states: D-, D°, D±

0 D

e-

D°

h+

• Track concentrations of e, h, D-, D°, D± vs depth and time:

D+ O-

• Carrier-Defect reaction rates calculated alongside coupled Drift-Diffusion and Poisson's
equations
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9 Treatment of defects was significant in establishing a matching
baseline comparison to forward-biased experiment in ideal
diode regime

Drift-Diffusion only 60 0 Series Resistance added
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10 Benchmarking experiment measures photocurrent response to
electron beam, simulating Compton electron generation from
gamma irradiation

Parameter analyzer
for IV measurements
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ii Real devices demonstrate two photocurrent response regimes
when exposed to ionizing radiation.This phenomenon is not
properly modeled by impact ionization alone.
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12 I Increased dose rate results in the onset of multiplication at lower
biases.

10-

10-

1 a - 13
0

leissoso
. • 0

OS•• *

i_______
• 4..

• 0 radfs, exp

• 3.6 x 106 raci/s, exp

• 1.1 x 107 raci/s, exp

• 1.3 x 108 raci/s, exp

0 radis, sim

3.6 x 106 raci/s, sim

1.1 x 107 ratd/s, sim

1.3 x 108 rad/s, sim

IN.

—250 —500 —750 —1000-1250-1500-1750-2000
Bias [V]

RADIATION EFFECTS MODELING APPROACH COMPARISON WITH EXPERIMENT



13 I What could we be missing?

• Space-charge limited conduction breakdown mechanisms

• Multiple defects/ GaN-specific defects

• Higher-dimension geometries/ field structures

Where are we going next?

• Exploration of breakdown mechanisms

• Role of defects from heavy ion radiation or neutrons and photocurrent to be explored

• Mixed field models and experiments
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14 I Conclusions

• An exploratory physics code examining defect evolution in GaN is being developed

• Near-term objectives:

• Compare baseline electrical response of real GaN power diodes

• Validate radiation response under pure-ionizing dose (no displacement damage)

• Successes:

• Baseline agreement for forward-biased devices

• Near-agreement in breakdown voltage for baseline reverse-biased devices, but no

leakage current

• Strong agreement with experiment for photocurrent response in low-biased regimes

ION BEAM CHARACTERIZATION 1 D CARRIER TRANSPORT MODELING 14 MEV RECOIL SPECTRUM



1 5 Further understanding of device physics enabled by examining
depth profiles
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